THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals

Page created by Erik Burke
 
CONTINUE READING
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
THE JOURNEY OF THE
      OOCYTE
    Rener UPSkill Health Series
         bioclinic naturals

           www.naturalhealthfertility.com
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
THE OOCYTE
                                                                                                                        Mature human oocyte
                                                                                                                        contains more
                                                                                                                        mitochondria and
                                                                                                                        mtDNA than other cell
                                                                                                                        types
                                                                                                                        Mitochondria - key
                                                                                                                        factors mediating
                                                                                                                        reproductive
                                                                                                                        competence
Cecchino, G., Seli, E., Alves da Motta, E., & García-Velasco, J. (2018). The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive
Biomedicine Online, 36(6), 686–697. https://doi.org/10.1016/j.rbmo.2018.02.007

© Leah Hechtman 2020                                                                    www.naturalhealthfertility.com                                      2
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
OVARIAN BIOLOGY
20/40 gestation: 6-7 million
Ovarian atresia onwards (independent of ovulation)
At birth: 700,000 follicles
At puberty: 400,000 follicles
Monthly ovulation: 20-30 follicles per cycle

 © Leah Hechtman 2020   www.naturalhealthfertility.com   3
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
THE HUMAN OOCYTE

© Leah Hechtman 2020   www.naturalhealthfertility.com   4
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
HISTOLOGY OF INFANT OVARIAN
          TISSUE

© Leah Hechtman 2020   www.naturalhealthfertility.com   5
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
OVARIAN BIOLOGY
     Constant oocyte atresia
     Early menopause or POI/POF can occur in any
     woman
      • a decrease in the initial primordial follicle number
      • an increase in apoptosis or follicle destruction
      • a failure of the follicle to respond to
        gonadotrophin stimulation

                                                             6
© Leah Hechtman 2020        www.naturalhealthfertility.com
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
NORMAL
                                          FOLLICULOGENESIS
                                                                                                                                                1. Primordial follicles
                                                                                                                                                2. Primary follicles
                                                                                                                                                3. Preantral follicles
                                                                                                                                                4. Antral follicles
                                                                                                                                                5. Ovulation

Sheikhansari, Golshan, Leili Aghebati-Maleki, Mohammad Nouri, Farhad Jadidi-Niaragh, and Mehdi Yousefi. 2018. ‘Current Approaches for the Treatment of Premature Ovarian Failure with Stem Cell Therapy’. Biomedicine & Pharmacotherapy 102 (June): 254–62.
https://doi.org/10.1016/j.biopha.2018.03.056.
Chan, K. A., M. W. Tsoulis, and D. M. Sloboda. 2015. ‘Early-Life Nutritional Effects on the Female Reproductive System’. Journal of Endocrinology 224 (2): R45–62. https://doi.org/10.1530/JOE-14-0469.

                                                                                                                                                                                                   7
© Leah Hechtman 2020                                                                                              www.naturalhealthfertility.com
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
OVARIAN FOLLICLE
                      CLASSIFICATION
                                Alternate                                           Size          Size
       Class                  nomenclature     Type              No. of cells   (diameter)    ultrasound
Primordial follicle               Small        1, 2, 3                     25      1000     > 6000µm     18 – 28mm
follicle

       © Leah Hechtman 2020                   www.naturalhealthfertility.com       8
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
THE HUMAN OOCYTE

© Leah Hechtman 2020   www.naturalhealthfertility.com   9
THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
TRIGENERATIONAL IMPACT

Chan, K. A., M. W. Tsoulis, and D. M. Sloboda. 2015. ‘Early-Life Nutritional Effects on the Female Reproductive System’. Journal of Endocrinology 224 (2): R45–62.
https://doi.org/10.1530/JOE-14-0469.

© Leah Hechtman 2020                                                    www.naturalhealthfertility.com
OVARIAN AGEING

         www.naturalhealthfertility.com
FEMALE FERTILITY
       Ovarian ageing – decrease in quantity and
       quality of oocytes
       Aged oocytes – reduced amounts of
       mitochondria

Labarta, E., Santos, M. J. de los, Escribá, M. J., Pellicer, A., & Herraiz, S. (2019). Mitochondria as a tool for oocyte rejuvenation. Fertility and Sterility, 111(2), 219–
226. https://doi.org/10.1016/j.fertnstert.2018.10.036

          © Leah Hechtman 2020                                         www.naturalhealthfertility.com
MITOCHONDRIAL HEALTH
       Mitochondria represent the primary source of ATP
       production within oocytes and are critical for normal
       oocyte maturation
       Embryogenesis is an energy-demanding process,
       and oocyte-derived mitochondria are required to
       support blastocyst formation
       Ovarian ageing is also associated with increased
       accumulation of mitochondrial DNA mutations which
       are likely to affect mitochondrial biogenesis and
       impact oocyte quality
Dumollard, R., Duchen, M., & Carroll, J. (2007). The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology, 77, 21–49.
https://doi.org/10.1016/S0070-2153(06)77002-8
May-Panloup, P., Boucret, L., Chao de la Barca, J.-M., Desquiret-Dumas, V., Ferré-L’Hotellier, V., Morinière, C., Descamps, P., Procaccio, V., & Reynier, P. (2016). Ovarian ageing: The
role of mitochondria in oocytes and follicles. Human Reproduction Update, 22(6), 725–743. https://doi.org/10.1093/humupd/dmw028

            © Leah Hechtman 2020                                            www.naturalhealthfertility.com                             13
MITOCHONDRIAL HEALTH

May-Panloup, P., Boucret, L., Chao de la Barca, J.-M., Desquiret-Dumas, V., Ferré-L’Hotellier, V., Morinière, C., Descamps, P., Procaccio, V., & Reynier, P. (2016). Ovarian ageing: The role of mitochondria in
oocytes and follicles. Human Reproduction Update, 22(6), 725–743. https://doi.org/10.1093/humupd/dmw028

             © Leah Hechtman 2020                                                       www.naturalhealthfertility.com                                     14
MITOCHONDRIAL HEALTH
DNA methylation in oocytes is established during growth
Global DNA methylation is low in early oogenesis and peaks as
oocytes reach full size
DNA methylation is necessary to establish imprinted gene
expression
The epigenome of the oocyte is dramatically remodelled during
oogenesis
One sheep study
• Subtle, long-term programming effects associated with modest reductions in
  B vitamin and methionine status around the time of conception
• Key components of the methionine cycle within the ovarian follicle were
  altered, including the ratio of SAM to SAH, which is associated with the
  extent of DNA methylation

 © Leah Hechtman 2020       www.naturalhealthfertility.com   15
MITOCHONDRIAL HEALTH
Reik, W. (2001). Epigenetic Reprogramming in Mammalian Development. Science,
293(5532), 1089–1093. https://doi.org/10.1126/science.1063443
Tomizawa, S.-I., Nowacka-Woszuk, J., & Kelsey, G. (2012). DNA methylation establishment
during oocyte growth: Mechanisms and significance. The International Journal of
Developmental Biology, 56(10–12), 867–875. https://doi.org/10.1387/ijdb.120152gk
Tian, X., & Diaz, F. J. (2013). Acute dietary zinc deficiency before conception compromises
oocyte epigenetic programming and disrupts embryonic development. Developmental
Biology, 376(1), 51–61. https://doi.org/10.1016/j.ydbio.2013.01.015
Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J.,
Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T.
G., & Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in
offspring determined by maternal periconceptional B vitamin and methionine status.
Proceedings of the National Academy of Sciences of the United States of America,
104(49), 19351–19356. https://doi.org/10.1073/pnas.0707258104

  © Leah Hechtman 2020              www.naturalhealthfertility.com
SOURCES OF OXIDATIVE
                  STRESS

Roychoudhury, S., Agarwal, A., Virk, G., & Cho, C.-L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility.
Reproductive Biomedicine Online, 34(5), 487–498. https://doi.org/10.1016/j.rbmo.2017.02.006

          © Leah Hechtman 2020                                      www.naturalhealthfertility.com
NUTRITION AND
                  MITOCHONDRIAL HEALTH
       Increase respiratory chain flux (e.g. CoQ10,
       riboflavin)
       Serve as antioxidants (e.g. CoQ10, ALA, vitamin
       C and E), and/or act as cofactors (e.g. riboflavin,
       thiamine)
       Function as mitochondrial substrates (e.g. L-
       carnitine)
Hirano, M., Emmanuele, V., & Quinzii, C. M. (2018). Emerging therapies for mitochondrial diseases. Essays in Biochemistry, 62(3), 467–481.
https://doi.org/10.1042/EBC20170114

           © Leah Hechtman 2020                                         www.naturalhealthfertility.com
MITOCHONDRIAL DYSFUNCTION
    AND BIOACTIVE FOOD

Mafra, D., Gidlund, E.-K., Borges, N. A., Magliano, D. C., Lindholm, B., Stenvinkel, P., & von Walden, F. (2018). Bioactive food and exercise in chronic kidney
disease: Targeting the mitochondria. European Journal of Clinical Investigation, 48(11), e13020. https://doi.org/10.1111/eci.13020

          © Leah Hechtman 2020                                      www.naturalhealthfertility.com
OVERVIEW OF RELEVANT
            NUTRIENTS IN BIOENERGETIC
            MITOCHONDRIAL PROCESSES

Wesselink, E., Koekkoek, W. a. C., Grefte, S., Witkamp, R. F., & van Zanten, A. R. H. (2018). Feeding mitochondria: Potential role of nutritional components to
improve critical illness convalescence. Clinical Nutrition (Edinburgh, Scotland). https://doi.org/10.1016/j.clnu.2018.08.032

          © Leah Hechtman 2020
                                                                   www.naturalhealthfertility.com
ANTIOXIDANTS
       Mitochondria-targeted antioxidants have shown
       great potential because they cross the
       mitochondrial phospholipid bilayer and eliminate
       ROS at the heart of the source
       Some conflicting evidence – more research
       needed

Oyewole, A. O., & Birch-Machin, M. A. (2015). Mitochondria-targeted antioxidants. FASEB Journal: Official Publication of the Federation of American Societies for
Experimental Biology, 29(12), 4766–4771. https://doi.org/10.1096/fj.15-275404

          © Leah Hechtman 2020                                         www.naturalhealthfertility.com
COENZYME Q10

© Leah Hechtman 2020       www.naturalhealthfertility.com   22
COENZYME Q10 (COQ10)
        Highest concentration in the mitochondria
        Decrease in mitochondrial activity associated with
        CoQ10 deficiency affects the granulosa cells’
        capacity to generate ATP
        Supplementation delayed age-mediated oocyte loss
        CoQ10 production slows with ageing, making the
        body less effective at protecting the eggs from
        oxidative damage
Ben-Meir, A., Burstein, E., Borrego-Alvarez, A., Chong, J., Wong, E., Yavorska, T., … Jurisicova, A. (2015). Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging
Cell, 14(5), 887–895. https://doi.org/10.1111/acel.12368
Ben-Meir, A., Yahalomi, S., Moshe, B., Shufaro, Y., Reubinoff, B., & Saada, A. (2015). Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertility and
Sterility, 104(3), 724–727. https://doi.org/10.1016/j.fertnstert.2015.05.023
Özcan, P., Fıçıcıoğlu, C., Kizilkale, O., Yesiladali, M., Tok, O. E., Ozkan, F., & Esrefoglu, M. (2016). Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? Journal of Assisted
Reproduction and Genetics, 33(9), 1223–1230. https://doi.org/10.1007/s10815-016-0751-z
Hernández-Camacho, J. D., Bernier, M., López-Lluch, G., & Navas, P. (2018). Coenzyme Q10 Supplementation in Aging and Disease. Frontiers in Physiology, 9, 44. https://doi.org/10.3389/fphys.2018.00044
Xu, Y., Nisenblat, V., Lu, C., Li, R., Qiao, J., Zhen, X., & Wang, S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian
reserve: a randomized controlled trial. Reproductive Biology and Endocrinology : RB&E, 16. https://doi.org/10.1186/s12958-018-0343-

             © Leah Hechtman 2020                                                      www.naturalhealthfertility.com
COENZYME Q10 (COQ10)
       Lowered aneuploidy rate
       Delayed ovarian reserve depletion
       Restored oocyte mitochondrial gene expression
       Improved mitochondrial activity and distribution
       Lowered ROS levels in oocytes
       Increased mitochondrial mass and polarization
       Increased ATP levels in oocytes
Cecchino, G., Seli, E., Alves da Motta, E., & García-Velasco, J. (2018). The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and
current insights. Reproductive Biomedicine Online, 36(6), 686–697. https://doi.org/10.1016/j.rbmo.2018.02.007

           © Leah Hechtman 2020                                           www.naturalhealthfertility.com
COENZYME Q10 (COQ10)

Teran, E., Hernández, I., Tana, L., Teran, S., Galaviz-Hernandez, C., Sosa-Macías, M., … Calle, A. (2018). Mitochondria and Coenzyme Q10 in the Pathogenesis of
Preeclampsia. Frontiers in Physiology, 9, 1561. https://doi.org/10.3389/fphys.2018.01561

© Leah Hechtman 2019                                              www.naturalhealthfertility.com                     25
COQ10: TRANSLATE INTO
               PRACTICE
     Form and delivery
     Dose
     Frequency
     Duration of treatment
     Response prediction and outcome assessment

© Leah Hechtman 2020   www.naturalhealthfertility.com   26
IRON

© Leah Hechtman 2020   www.naturalhealthfertility.com   27
IRON
       Greater intake (dietary or supplemental) =
       increased fertility due to ovarian utilization
       One study – 18555 women
         • Supplemented – significantly lower risk of ovulatory
           infertility
         • Non-haem iron preferred over haem-derived

Buhling, K. J., & Grajecki, D. (2013). The effect of micronutrient supplements on female fertility. Current Opinion in Obstetrics & Gynecology, 25(3), 173–180.
https://doi.org/10.1097/GCO.0b013e3283609138
Chavarro, J. E., Rich-Edwards, J. W., Rosner, B. A., & Willett, W. C. (2006). Iron intake and risk of ovulatory infertility. Obstetrics and Gynecology, 108(5), 1145–
1152. https://doi.org/10.1097/01.AOG.0000238333.37423.ab

© Leah Hechtman 2020                                                 www.naturalhealthfertility.com                       28
IRON
     Peripheral tissues for synthesizing ATP and
     protein – lack of ATP = ↓ cells’ ability to synthsize
     DNA and mRNA
       • cofactor in the expression and activation of various
         metabolic enzymes involved in glycolysis
       • TCA cycle
       • Electron chain transfer
       • Pentose phosphate pathways

© Leah Hechtman 2020        www.naturalhealthfertility.com   29
Barrientos, T., Laothamatas, I., Koves, T. R., Soderblom, E. J., Bryan, M., Moseley, M. A.,
     Muoio, D. M., & Andrews, N. C. (2015). Metabolic Catastrophe in Mice Lacking Transferrin
     Receptor in Muscle. EBioMedicine, 2(11), 1705–1717.
     https://doi.org/10.1016/j.ebiom.2015.09.041
     Li, Y. Q., Cao, X. X., Bai, B., Zhang, J. N., Wang, M. Q., & Zhang, Y. H. (2014). Severe iron
     deficiency is associated with a reduced conception rate in female rats. Gynecologic and
     Obstetric Investigation, 77(1), 19–23. https://doi.org/10.1159/000355112
     Dhur, A., Galan, P., & Hercberg, S. (1989). Effects of different degrees of iron deficiency on
     cytochrome P450 complex and pentose phosphate pathway dehydrogenases in the rat.
     The Journal of Nutrition, 119(1), 40–47. https://doi.org/10.1093/jn/119.1.40
     Chitambar, C. R., & Narasimhan, J. (1991). Targeting iron-dependent DNA synthesis with
     gallium and transferrin-gallium. Pathobiology: Journal of Immunopathology, Molecular and
     Cellular Biology, 59(1), 3–10. https://doi.org/10.1159/000163609

© Leah Hechtman 2020                     www.naturalhealthfertility.com   30
IRON
       Recent study
         • Low iron = low oestrous cycle = impaired follicle
           development and fertility
         • Lowered iron in serum, liver, ovaries
         • Lowered ATP in ovaries and mRNA expressions of follicle
           development markers (Fshr, Cyp19a1 and Ccnd2 mRNA)
         • Lowered oestrogen production
         • Failed follicle development and fertility

Tonai, S., Kawabata, A., Nakanishi, T., Lee, J. Y., Okamoto, A., Shimada, M., & Yamashita, Y. (2020). Iron deficiency induces female infertile in order to failure of
follicular development in mice. The Journal of Reproduction and Development. https://doi.org/10.1262/jrd.2020-074

© Leah Hechtman 2020                                                 www.naturalhealthfertility.com                       31
IRON OVERLOAD
     Excess iron leads to reduced production of LH and FSH
     from the anterior pituitary, suggesting impaired oocyte
     maturation and low ovarian reserve
     In patients with beta-thalassemia, multiple blood
     transfusions and increased gastrointestinal iron
     absorption leads to iron overload in the body and
     infertility
     Haemochromatosis -> leads to subfertility
     Thalassemia = low AMH and low AFC = harm to ovarian
     reserve

© Leah Hechtman 2020       www.naturalhealthfertility.com   32
IRON OVERLOAD
     Singer, S. T., Vichinsky, E. P., Gildengorin, G., van Disseldorp, J., Rosen, M., & Cedars, M. I. (2011). Reproductive
     capacity in iron overloaded women with thalassemia major. Blood, 118(10), 2878–2881.
     https://doi.org/10.1182/blood-2011-06-360271
     Mishra, A. K., & Tiwari, A. (2013). Iron Overload in Beta Thalassaemia Major and Intermedia Patients.Mædica,
     8(4), 328–332.
     Tweed, M. J., & Roland, J. M. (1998). Haemochromatosis as an endocrine cause of subfertility.BMJ : British
     Medical Journal, 316(7135), 915–916.
     Chang, H.-H., Chen, M.-J., Lu, M.-Y., Chern, J. P. S., Lu, C.-Y., Yang, Y.-L., Jou, S.-T., Lin, D.-T., Yang, Y.-S., &
     Lin, K.-H. (2011). Iron overload is associated with low anti-müllerian hormone in women with transfusion-
     dependent β-thalassaemia. BJOG: An International Journal of Obstetrics and Gynaecology, 118(7), 825–831.
     https://doi.org/10.1111/j.1471-0528.2011.02927.x
     Roussou, P., Tsagarakis, N. J., Kountouras, D., Livadas, S., & Diamanti-Kandarakis, E. (2013). Beta-Thalassemia
     Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress. Anemia, 2013.
     https://doi.org/10.1155/2013/617204
     Uysal, A., Alkan, G., Kurtoğlu, A., Erol, O., & Kurtoğlu, E. (2017). Diminished ovarian reserve in women with
     transfusion-dependent beta-thalassemia major: Is iron gonadotoxic? European Journal of Obstetrics, Gynecology,
     and Reproductive Biology, 216, 69–73. https://doi.org/10.1016/j.ejogrb.2017.06.038
     Mensi, L., Borroni, R., Reschini, M., Cassinerio, E., Vegetti, W., Baldini, M., Cappellini, M. D., & Somigliana, E.
     (2019). Oocyte quality in women with thalassaemia major: Insights from IVF cycles. European Journal of
     Obstetrics & Gynecology and Reproductive Biology: X, 3, 100048. https://doi.org/10.1016/j.eurox.2019.100048

© Leah Hechtman 2020                              www.naturalhealthfertility.com         33
IRON AND ENDOMETRIOSIS

Defrère, S., Lousse, J. C., González-Ramos, R., Colette, S., Donnez, J., & Van Langendonckt, A. (2008). Potential involvement of iron in the pathogenesis of
peritoneal endometriosis. Molecular Human Reproduction, 14(7), 377–385. https://doi.org/10.1093/molehr/gan033

© Leah Hechtman 2020                                               www.naturalhealthfertility.com                      34
IRON THROUGH THE
                          PREGNANCY

Milman, N. (2011). Iron in pregnancy: How do we secure an appropriate iron status in the mother and child? Annals of Nutrition & Metabolism, 59(1), 50–54.
https://doi.org/10.1159/000332129

© Leah Hechtman 2020                                             www.naturalhealthfertility.com                   35
TRACE ELEMENTS AND
                 PROPOSED EFFECT ON
                  OVARIAN FUNCTION

© Leah Hechtman 2020   www.naturalhealthfertility.com   36
IRON: TRANSLATE INTO
                   PRACTICE
     Form and delivery
     Dose
     Frequency
     Duration of treatment
     Response prediction and outcome assessment

© Leah Hechtman 2020   www.naturalhealthfertility.com   37
VITAMIN D

© Leah Hechtman 2020     www.naturalhealthfertility.com   38
EFFECT OF VITAMIN D ON
                 TISSUES AND FERTILITY

Lerchbaum, E., & Obermayer-Pietsch, B. (2012). Vitamin D and fertility: A systematic review. European Journal of Endocrinology, 166(5), 765–778.
https://doi.org/10.1530/EJE-11-0984

          © Leah Hechtman 2018                                   www.naturalhealthfertility.com                     39
VITAMIN D
     Even before pregnancy, vitamin D initiates
     and/or sustains actions to facilitate fertilization
     and implantation
     Hypovitaminosis D is known to lead to
     subfertility, infertility and pathological alteration
     of critical reproductive tissues, such as the
     endometrium

© Leah Hechtman 2020      www.naturalhealthfertility.com   40
VITAMIN D
     Blomberg Jensen, M. (2014). Vitamin D and male reproduction. Nature Reviews. Endocrinology, 10(3), 175–186.
     https://doi.org/10.1038/nrendo.2013.262
     Dabrowski, F., Grzechocinska, B., & Wielgos, M. (2015). The Role of Vitamin D in Reproductive Health—A Trojan
     Horse or the Golden Fleece? Nutrients, 7(6), 4139–4153. https://doi.org/10.3390/nu7064139
     Luk, J., Torrealday, S., Neal Perry, G., & Pal, L. (2012). Relevance of vitamin D in reproduction. Human
     Reproduction (Oxford, England), 27(10), 3015–3027. https://doi.org/10.1093/humrep/des248
     Refaat, B., Ahmad, J., Idris, S., Kamfar, F. F., Ashshi, A. M., Batwa, S. A., & Malibary, F. A. (2017).
     Characterisation of vitamin D-related molecules and calcium-sensing receptor in human Fallopian tube during the
     menstrual cycle and in ectopic pregnancy. Cell and Tissue Research, 368(1), 201–213.
     https://doi.org/10.1007/s00441-016-2519-2
     Shin, J. S., Choi, M. Y., Longtine, M. S., & Nelson, D. M. (2010). Vitamin D Effects on Pregnancy and the
     Placenta. Placenta, 31(12), 1027–1034. https://doi.org/10.1016/j.placenta.2010.08.015
     Anagnostis, P., Karras, S., & Goulis, D. G. (2013). Vitamin D in human reproduction: A narrative review: Vitamin D
     and reproduction. International Journal of Clinical Practice, 67(3), 225–235. https://doi.org/10.1111/ijcp.12031
     Blomberg Jensen, M., Gerner Lawaetz, J., Andersson, A.-M., Petersen, J. H., Nordkap, L., Bang, A. K., Ekbom, P.,
     Joensen, U. N., Prætorius, L., Lundstrøm, P., Boujida, V. H., Lanske, B., Juul, A., & Jørgensen, N. (2016). Vitamin
     D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Human
     Reproduction (Oxford, England), 31(8), 1875–1885. https://doi.org/10.1093/humrep/dew152

© Leah Hechtman 2020                             www.naturalhealthfertility.com        41
VITAMIN D RECEPTOR (VDR)
      Interest in the reproductive functions of vitamin D
      surfaced following the discovery of the vitamin D
      receptor (VDR) and the metabolizing enzyme 1α-
      hydroxylase in the decidua, placenta, ovary,
      endometrium and pituitary gland
      VDR is expressed in ovarian granulosa cells and
      fallopian epithelial cells and this expression
      increases during pregnancy
Dabrowski, F., Grzechocinska, B., & Wielgos, M. (2015). The Role of Vitamin D in Reproductive Health—A Trojan Horse or the Golden Fleece? Nutrients, 7(6),
4139–4153. https://doi.org/10.3390/nu7064139
Mousa, A., Abell, S., Scragg, R., & de Courten, B. (2016). Vitamin D in Reproductive Health and Pregnancy. Seminars in Reproductive Medicine, 34(2), e1-13.
https://doi.org/10.1055/s-0036-1583529

          © Leah Hechtman 2020                                   www.naturalhealthfertility.com                    42
VITAMIN D: HORMONE
                         REGULATION
       Placental steroidogenesis
       Decidualization of the endometrium through
       different signalling pathways of the VDR

Aleyasin, A., Hosseini, M. A., Mahdavi, A., Safdarian, L., Fallahi, P., Mohajeri, M. R., Abbasi, M., & Esfahani, F. (2011). Predictive value of the level of vitamin D in
follicular fluid on the outcome of assisted reproductive technology. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 159(1), 132–137.
https://doi.org/10.1016/j.ejogrb.2011.07.006

© Leah Hechtman 2020                                                   www.naturalhealthfertility.com                        43
VITAMIN D: IMPACT TO OVARIAN
             TISSUE
       Cholecalciferol stimulates
         • Progesterone production by 13%
         • Oestradiol production by 9%
         • Oestrone production by 21%

Parikh, G., Varadinova, M., Suwandhi, P., Araki, T., Rosenwaks, Z., Poretsky, L., & Seto-Young, D. (2010). Vitamin D regulates steroidogenesis and insulin-like
growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung =
Hormones Et Metabolisme, 42(10), 754–757. https://doi.org/10.1055/s-0030-1262837

© Leah Hechtman 2020                                               www.naturalhealthfertility.com                      44
VITAMIN D: AMH PATTERNING
      Vitamin D changes AMH production patterns in
      ovarian granulosa cells and alters FSH
      sensitivity
         • Ovarian follicle development
         • Ovarian reserve preservation
         • PCOS women: Abnormal AMH levels normalized with
           Vitamin D
Merhi, Z. (2014). Advanced glycation end products and their relevance in female reproduction. Human Reproduction, 29(1), 135–145.
https://doi.org/10.1093/humrep/det383
Dabrowski, F., Grzechocinska, B., & Wielgos, M. (2015). The Role of Vitamin D in Reproductive Health—A Trojan Horse or the Golden Fleece? Nutrients, 7(6),
4139–4153. https://doi.org/10.3390/nu7064139

© Leah Hechtman 2020                                             www.naturalhealthfertility.com                    45
PROPOSED ASSOCIATIONS OF
      VITAMIN D STATUS WITH
      FEMALE REPRODUCTION

Lerchbaum, E., & Obermayer-Pietsch, B. (2012). Vitamin D and fertility: A systematic review. European Journal of Endocrinology, 166(5), 765–778.
https://doi.org/10.1530/EJE-11-0984

© Leah Hechtman 2020                                             www.naturalhealthfertility.com                     46
VITAMIN D: TRANSLATE INTO
               PRACTICE
     Form and delivery
     Dose
     Frequency
     Duration of treatment
     Response prediction and outcome assessment

© Leah Hechtman 2020   www.naturalhealthfertility.com   47
Thank you

© Leah Hechtman 2020   www.naturalhealthfertility.com   48
Q&A

© Leah Hechtman 2020   www.naturalhealthfertility.com   49
You can also read