THE JOURNEY OF THE OOCYTE - Rener UPSkill Health Series bioclinic naturals
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
THE JOURNEY OF THE OOCYTE Rener UPSkill Health Series bioclinic naturals www.naturalhealthfertility.com
THE OOCYTE Mature human oocyte contains more mitochondria and mtDNA than other cell types Mitochondria - key factors mediating reproductive competence Cecchino, G., Seli, E., Alves da Motta, E., & García-Velasco, J. (2018). The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive Biomedicine Online, 36(6), 686–697. https://doi.org/10.1016/j.rbmo.2018.02.007 © Leah Hechtman 2020 www.naturalhealthfertility.com 2
OVARIAN BIOLOGY 20/40 gestation: 6-7 million Ovarian atresia onwards (independent of ovulation) At birth: 700,000 follicles At puberty: 400,000 follicles Monthly ovulation: 20-30 follicles per cycle © Leah Hechtman 2020 www.naturalhealthfertility.com 3
OVARIAN BIOLOGY Constant oocyte atresia Early menopause or POI/POF can occur in any woman • a decrease in the initial primordial follicle number • an increase in apoptosis or follicle destruction • a failure of the follicle to respond to gonadotrophin stimulation 6 © Leah Hechtman 2020 www.naturalhealthfertility.com
NORMAL FOLLICULOGENESIS 1. Primordial follicles 2. Primary follicles 3. Preantral follicles 4. Antral follicles 5. Ovulation Sheikhansari, Golshan, Leili Aghebati-Maleki, Mohammad Nouri, Farhad Jadidi-Niaragh, and Mehdi Yousefi. 2018. ‘Current Approaches for the Treatment of Premature Ovarian Failure with Stem Cell Therapy’. Biomedicine & Pharmacotherapy 102 (June): 254–62. https://doi.org/10.1016/j.biopha.2018.03.056. Chan, K. A., M. W. Tsoulis, and D. M. Sloboda. 2015. ‘Early-Life Nutritional Effects on the Female Reproductive System’. Journal of Endocrinology 224 (2): R45–62. https://doi.org/10.1530/JOE-14-0469. 7 © Leah Hechtman 2020 www.naturalhealthfertility.com
OVARIAN FOLLICLE CLASSIFICATION Alternate Size Size Class nomenclature Type No. of cells (diameter) ultrasound Primordial follicle Small 1, 2, 3 25 1000 > 6000µm 18 – 28mm follicle © Leah Hechtman 2020 www.naturalhealthfertility.com 8
TRIGENERATIONAL IMPACT Chan, K. A., M. W. Tsoulis, and D. M. Sloboda. 2015. ‘Early-Life Nutritional Effects on the Female Reproductive System’. Journal of Endocrinology 224 (2): R45–62. https://doi.org/10.1530/JOE-14-0469. © Leah Hechtman 2020 www.naturalhealthfertility.com
OVARIAN AGEING www.naturalhealthfertility.com
FEMALE FERTILITY Ovarian ageing – decrease in quantity and quality of oocytes Aged oocytes – reduced amounts of mitochondria Labarta, E., Santos, M. J. de los, Escribá, M. J., Pellicer, A., & Herraiz, S. (2019). Mitochondria as a tool for oocyte rejuvenation. Fertility and Sterility, 111(2), 219– 226. https://doi.org/10.1016/j.fertnstert.2018.10.036 © Leah Hechtman 2020 www.naturalhealthfertility.com
MITOCHONDRIAL HEALTH Mitochondria represent the primary source of ATP production within oocytes and are critical for normal oocyte maturation Embryogenesis is an energy-demanding process, and oocyte-derived mitochondria are required to support blastocyst formation Ovarian ageing is also associated with increased accumulation of mitochondrial DNA mutations which are likely to affect mitochondrial biogenesis and impact oocyte quality Dumollard, R., Duchen, M., & Carroll, J. (2007). The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology, 77, 21–49. https://doi.org/10.1016/S0070-2153(06)77002-8 May-Panloup, P., Boucret, L., Chao de la Barca, J.-M., Desquiret-Dumas, V., Ferré-L’Hotellier, V., Morinière, C., Descamps, P., Procaccio, V., & Reynier, P. (2016). Ovarian ageing: The role of mitochondria in oocytes and follicles. Human Reproduction Update, 22(6), 725–743. https://doi.org/10.1093/humupd/dmw028 © Leah Hechtman 2020 www.naturalhealthfertility.com 13
MITOCHONDRIAL HEALTH May-Panloup, P., Boucret, L., Chao de la Barca, J.-M., Desquiret-Dumas, V., Ferré-L’Hotellier, V., Morinière, C., Descamps, P., Procaccio, V., & Reynier, P. (2016). Ovarian ageing: The role of mitochondria in oocytes and follicles. Human Reproduction Update, 22(6), 725–743. https://doi.org/10.1093/humupd/dmw028 © Leah Hechtman 2020 www.naturalhealthfertility.com 14
MITOCHONDRIAL HEALTH DNA methylation in oocytes is established during growth Global DNA methylation is low in early oogenesis and peaks as oocytes reach full size DNA methylation is necessary to establish imprinted gene expression The epigenome of the oocyte is dramatically remodelled during oogenesis One sheep study • Subtle, long-term programming effects associated with modest reductions in B vitamin and methionine status around the time of conception • Key components of the methionine cycle within the ovarian follicle were altered, including the ratio of SAM to SAH, which is associated with the extent of DNA methylation © Leah Hechtman 2020 www.naturalhealthfertility.com 15
MITOCHONDRIAL HEALTH Reik, W. (2001). Epigenetic Reprogramming in Mammalian Development. Science, 293(5532), 1089–1093. https://doi.org/10.1126/science.1063443 Tomizawa, S.-I., Nowacka-Woszuk, J., & Kelsey, G. (2012). DNA methylation establishment during oocyte growth: Mechanisms and significance. The International Journal of Developmental Biology, 56(10–12), 867–875. https://doi.org/10.1387/ijdb.120152gk Tian, X., & Diaz, F. J. (2013). Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Developmental Biology, 376(1), 51–61. https://doi.org/10.1016/j.ydbio.2013.01.015 Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., & Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19351–19356. https://doi.org/10.1073/pnas.0707258104 © Leah Hechtman 2020 www.naturalhealthfertility.com
SOURCES OF OXIDATIVE STRESS Roychoudhury, S., Agarwal, A., Virk, G., & Cho, C.-L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reproductive Biomedicine Online, 34(5), 487–498. https://doi.org/10.1016/j.rbmo.2017.02.006 © Leah Hechtman 2020 www.naturalhealthfertility.com
NUTRITION AND MITOCHONDRIAL HEALTH Increase respiratory chain flux (e.g. CoQ10, riboflavin) Serve as antioxidants (e.g. CoQ10, ALA, vitamin C and E), and/or act as cofactors (e.g. riboflavin, thiamine) Function as mitochondrial substrates (e.g. L- carnitine) Hirano, M., Emmanuele, V., & Quinzii, C. M. (2018). Emerging therapies for mitochondrial diseases. Essays in Biochemistry, 62(3), 467–481. https://doi.org/10.1042/EBC20170114 © Leah Hechtman 2020 www.naturalhealthfertility.com
MITOCHONDRIAL DYSFUNCTION AND BIOACTIVE FOOD Mafra, D., Gidlund, E.-K., Borges, N. A., Magliano, D. C., Lindholm, B., Stenvinkel, P., & von Walden, F. (2018). Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria. European Journal of Clinical Investigation, 48(11), e13020. https://doi.org/10.1111/eci.13020 © Leah Hechtman 2020 www.naturalhealthfertility.com
OVERVIEW OF RELEVANT NUTRIENTS IN BIOENERGETIC MITOCHONDRIAL PROCESSES Wesselink, E., Koekkoek, W. a. C., Grefte, S., Witkamp, R. F., & van Zanten, A. R. H. (2018). Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clinical Nutrition (Edinburgh, Scotland). https://doi.org/10.1016/j.clnu.2018.08.032 © Leah Hechtman 2020 www.naturalhealthfertility.com
ANTIOXIDANTS Mitochondria-targeted antioxidants have shown great potential because they cross the mitochondrial phospholipid bilayer and eliminate ROS at the heart of the source Some conflicting evidence – more research needed Oyewole, A. O., & Birch-Machin, M. A. (2015). Mitochondria-targeted antioxidants. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(12), 4766–4771. https://doi.org/10.1096/fj.15-275404 © Leah Hechtman 2020 www.naturalhealthfertility.com
COENZYME Q10 © Leah Hechtman 2020 www.naturalhealthfertility.com 22
COENZYME Q10 (COQ10) Highest concentration in the mitochondria Decrease in mitochondrial activity associated with CoQ10 deficiency affects the granulosa cells’ capacity to generate ATP Supplementation delayed age-mediated oocyte loss CoQ10 production slows with ageing, making the body less effective at protecting the eggs from oxidative damage Ben-Meir, A., Burstein, E., Borrego-Alvarez, A., Chong, J., Wong, E., Yavorska, T., … Jurisicova, A. (2015). Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell, 14(5), 887–895. https://doi.org/10.1111/acel.12368 Ben-Meir, A., Yahalomi, S., Moshe, B., Shufaro, Y., Reubinoff, B., & Saada, A. (2015). Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertility and Sterility, 104(3), 724–727. https://doi.org/10.1016/j.fertnstert.2015.05.023 Özcan, P., Fıçıcıoğlu, C., Kizilkale, O., Yesiladali, M., Tok, O. E., Ozkan, F., & Esrefoglu, M. (2016). Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? Journal of Assisted Reproduction and Genetics, 33(9), 1223–1230. https://doi.org/10.1007/s10815-016-0751-z Hernández-Camacho, J. D., Bernier, M., López-Lluch, G., & Navas, P. (2018). Coenzyme Q10 Supplementation in Aging and Disease. Frontiers in Physiology, 9, 44. https://doi.org/10.3389/fphys.2018.00044 Xu, Y., Nisenblat, V., Lu, C., Li, R., Qiao, J., Zhen, X., & Wang, S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reproductive Biology and Endocrinology : RB&E, 16. https://doi.org/10.1186/s12958-018-0343- © Leah Hechtman 2020 www.naturalhealthfertility.com
COENZYME Q10 (COQ10) Lowered aneuploidy rate Delayed ovarian reserve depletion Restored oocyte mitochondrial gene expression Improved mitochondrial activity and distribution Lowered ROS levels in oocytes Increased mitochondrial mass and polarization Increased ATP levels in oocytes Cecchino, G., Seli, E., Alves da Motta, E., & García-Velasco, J. (2018). The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive Biomedicine Online, 36(6), 686–697. https://doi.org/10.1016/j.rbmo.2018.02.007 © Leah Hechtman 2020 www.naturalhealthfertility.com
COENZYME Q10 (COQ10) Teran, E., Hernández, I., Tana, L., Teran, S., Galaviz-Hernandez, C., Sosa-Macías, M., … Calle, A. (2018). Mitochondria and Coenzyme Q10 in the Pathogenesis of Preeclampsia. Frontiers in Physiology, 9, 1561. https://doi.org/10.3389/fphys.2018.01561 © Leah Hechtman 2019 www.naturalhealthfertility.com 25
COQ10: TRANSLATE INTO PRACTICE Form and delivery Dose Frequency Duration of treatment Response prediction and outcome assessment © Leah Hechtman 2020 www.naturalhealthfertility.com 26
IRON © Leah Hechtman 2020 www.naturalhealthfertility.com 27
IRON Greater intake (dietary or supplemental) = increased fertility due to ovarian utilization One study – 18555 women • Supplemented – significantly lower risk of ovulatory infertility • Non-haem iron preferred over haem-derived Buhling, K. J., & Grajecki, D. (2013). The effect of micronutrient supplements on female fertility. Current Opinion in Obstetrics & Gynecology, 25(3), 173–180. https://doi.org/10.1097/GCO.0b013e3283609138 Chavarro, J. E., Rich-Edwards, J. W., Rosner, B. A., & Willett, W. C. (2006). Iron intake and risk of ovulatory infertility. Obstetrics and Gynecology, 108(5), 1145– 1152. https://doi.org/10.1097/01.AOG.0000238333.37423.ab © Leah Hechtman 2020 www.naturalhealthfertility.com 28
IRON Peripheral tissues for synthesizing ATP and protein – lack of ATP = ↓ cells’ ability to synthsize DNA and mRNA • cofactor in the expression and activation of various metabolic enzymes involved in glycolysis • TCA cycle • Electron chain transfer • Pentose phosphate pathways © Leah Hechtman 2020 www.naturalhealthfertility.com 29
Barrientos, T., Laothamatas, I., Koves, T. R., Soderblom, E. J., Bryan, M., Moseley, M. A., Muoio, D. M., & Andrews, N. C. (2015). Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle. EBioMedicine, 2(11), 1705–1717. https://doi.org/10.1016/j.ebiom.2015.09.041 Li, Y. Q., Cao, X. X., Bai, B., Zhang, J. N., Wang, M. Q., & Zhang, Y. H. (2014). Severe iron deficiency is associated with a reduced conception rate in female rats. Gynecologic and Obstetric Investigation, 77(1), 19–23. https://doi.org/10.1159/000355112 Dhur, A., Galan, P., & Hercberg, S. (1989). Effects of different degrees of iron deficiency on cytochrome P450 complex and pentose phosphate pathway dehydrogenases in the rat. The Journal of Nutrition, 119(1), 40–47. https://doi.org/10.1093/jn/119.1.40 Chitambar, C. R., & Narasimhan, J. (1991). Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 59(1), 3–10. https://doi.org/10.1159/000163609 © Leah Hechtman 2020 www.naturalhealthfertility.com 30
IRON Recent study • Low iron = low oestrous cycle = impaired follicle development and fertility • Lowered iron in serum, liver, ovaries • Lowered ATP in ovaries and mRNA expressions of follicle development markers (Fshr, Cyp19a1 and Ccnd2 mRNA) • Lowered oestrogen production • Failed follicle development and fertility Tonai, S., Kawabata, A., Nakanishi, T., Lee, J. Y., Okamoto, A., Shimada, M., & Yamashita, Y. (2020). Iron deficiency induces female infertile in order to failure of follicular development in mice. The Journal of Reproduction and Development. https://doi.org/10.1262/jrd.2020-074 © Leah Hechtman 2020 www.naturalhealthfertility.com 31
IRON OVERLOAD Excess iron leads to reduced production of LH and FSH from the anterior pituitary, suggesting impaired oocyte maturation and low ovarian reserve In patients with beta-thalassemia, multiple blood transfusions and increased gastrointestinal iron absorption leads to iron overload in the body and infertility Haemochromatosis -> leads to subfertility Thalassemia = low AMH and low AFC = harm to ovarian reserve © Leah Hechtman 2020 www.naturalhealthfertility.com 32
IRON OVERLOAD Singer, S. T., Vichinsky, E. P., Gildengorin, G., van Disseldorp, J., Rosen, M., & Cedars, M. I. (2011). Reproductive capacity in iron overloaded women with thalassemia major. Blood, 118(10), 2878–2881. https://doi.org/10.1182/blood-2011-06-360271 Mishra, A. K., & Tiwari, A. (2013). Iron Overload in Beta Thalassaemia Major and Intermedia Patients.Mædica, 8(4), 328–332. Tweed, M. J., & Roland, J. M. (1998). Haemochromatosis as an endocrine cause of subfertility.BMJ : British Medical Journal, 316(7135), 915–916. Chang, H.-H., Chen, M.-J., Lu, M.-Y., Chern, J. P. S., Lu, C.-Y., Yang, Y.-L., Jou, S.-T., Lin, D.-T., Yang, Y.-S., & Lin, K.-H. (2011). Iron overload is associated with low anti-müllerian hormone in women with transfusion- dependent β-thalassaemia. BJOG: An International Journal of Obstetrics and Gynaecology, 118(7), 825–831. https://doi.org/10.1111/j.1471-0528.2011.02927.x Roussou, P., Tsagarakis, N. J., Kountouras, D., Livadas, S., & Diamanti-Kandarakis, E. (2013). Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress. Anemia, 2013. https://doi.org/10.1155/2013/617204 Uysal, A., Alkan, G., Kurtoğlu, A., Erol, O., & Kurtoğlu, E. (2017). Diminished ovarian reserve in women with transfusion-dependent beta-thalassemia major: Is iron gonadotoxic? European Journal of Obstetrics, Gynecology, and Reproductive Biology, 216, 69–73. https://doi.org/10.1016/j.ejogrb.2017.06.038 Mensi, L., Borroni, R., Reschini, M., Cassinerio, E., Vegetti, W., Baldini, M., Cappellini, M. D., & Somigliana, E. (2019). Oocyte quality in women with thalassaemia major: Insights from IVF cycles. European Journal of Obstetrics & Gynecology and Reproductive Biology: X, 3, 100048. https://doi.org/10.1016/j.eurox.2019.100048 © Leah Hechtman 2020 www.naturalhealthfertility.com 33
IRON AND ENDOMETRIOSIS Defrère, S., Lousse, J. C., González-Ramos, R., Colette, S., Donnez, J., & Van Langendonckt, A. (2008). Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Molecular Human Reproduction, 14(7), 377–385. https://doi.org/10.1093/molehr/gan033 © Leah Hechtman 2020 www.naturalhealthfertility.com 34
IRON THROUGH THE PREGNANCY Milman, N. (2011). Iron in pregnancy: How do we secure an appropriate iron status in the mother and child? Annals of Nutrition & Metabolism, 59(1), 50–54. https://doi.org/10.1159/000332129 © Leah Hechtman 2020 www.naturalhealthfertility.com 35
TRACE ELEMENTS AND PROPOSED EFFECT ON OVARIAN FUNCTION © Leah Hechtman 2020 www.naturalhealthfertility.com 36
IRON: TRANSLATE INTO PRACTICE Form and delivery Dose Frequency Duration of treatment Response prediction and outcome assessment © Leah Hechtman 2020 www.naturalhealthfertility.com 37
VITAMIN D © Leah Hechtman 2020 www.naturalhealthfertility.com 38
EFFECT OF VITAMIN D ON TISSUES AND FERTILITY Lerchbaum, E., & Obermayer-Pietsch, B. (2012). Vitamin D and fertility: A systematic review. European Journal of Endocrinology, 166(5), 765–778. https://doi.org/10.1530/EJE-11-0984 © Leah Hechtman 2018 www.naturalhealthfertility.com 39
VITAMIN D Even before pregnancy, vitamin D initiates and/or sustains actions to facilitate fertilization and implantation Hypovitaminosis D is known to lead to subfertility, infertility and pathological alteration of critical reproductive tissues, such as the endometrium © Leah Hechtman 2020 www.naturalhealthfertility.com 40
VITAMIN D Blomberg Jensen, M. (2014). Vitamin D and male reproduction. Nature Reviews. Endocrinology, 10(3), 175–186. https://doi.org/10.1038/nrendo.2013.262 Dabrowski, F., Grzechocinska, B., & Wielgos, M. (2015). The Role of Vitamin D in Reproductive Health—A Trojan Horse or the Golden Fleece? Nutrients, 7(6), 4139–4153. https://doi.org/10.3390/nu7064139 Luk, J., Torrealday, S., Neal Perry, G., & Pal, L. (2012). Relevance of vitamin D in reproduction. Human Reproduction (Oxford, England), 27(10), 3015–3027. https://doi.org/10.1093/humrep/des248 Refaat, B., Ahmad, J., Idris, S., Kamfar, F. F., Ashshi, A. M., Batwa, S. A., & Malibary, F. A. (2017). Characterisation of vitamin D-related molecules and calcium-sensing receptor in human Fallopian tube during the menstrual cycle and in ectopic pregnancy. Cell and Tissue Research, 368(1), 201–213. https://doi.org/10.1007/s00441-016-2519-2 Shin, J. S., Choi, M. Y., Longtine, M. S., & Nelson, D. M. (2010). Vitamin D Effects on Pregnancy and the Placenta. Placenta, 31(12), 1027–1034. https://doi.org/10.1016/j.placenta.2010.08.015 Anagnostis, P., Karras, S., & Goulis, D. G. (2013). Vitamin D in human reproduction: A narrative review: Vitamin D and reproduction. International Journal of Clinical Practice, 67(3), 225–235. https://doi.org/10.1111/ijcp.12031 Blomberg Jensen, M., Gerner Lawaetz, J., Andersson, A.-M., Petersen, J. H., Nordkap, L., Bang, A. K., Ekbom, P., Joensen, U. N., Prætorius, L., Lundstrøm, P., Boujida, V. H., Lanske, B., Juul, A., & Jørgensen, N. (2016). Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Human Reproduction (Oxford, England), 31(8), 1875–1885. https://doi.org/10.1093/humrep/dew152 © Leah Hechtman 2020 www.naturalhealthfertility.com 41
VITAMIN D RECEPTOR (VDR) Interest in the reproductive functions of vitamin D surfaced following the discovery of the vitamin D receptor (VDR) and the metabolizing enzyme 1α- hydroxylase in the decidua, placenta, ovary, endometrium and pituitary gland VDR is expressed in ovarian granulosa cells and fallopian epithelial cells and this expression increases during pregnancy Dabrowski, F., Grzechocinska, B., & Wielgos, M. (2015). The Role of Vitamin D in Reproductive Health—A Trojan Horse or the Golden Fleece? Nutrients, 7(6), 4139–4153. https://doi.org/10.3390/nu7064139 Mousa, A., Abell, S., Scragg, R., & de Courten, B. (2016). Vitamin D in Reproductive Health and Pregnancy. Seminars in Reproductive Medicine, 34(2), e1-13. https://doi.org/10.1055/s-0036-1583529 © Leah Hechtman 2020 www.naturalhealthfertility.com 42
VITAMIN D: HORMONE REGULATION Placental steroidogenesis Decidualization of the endometrium through different signalling pathways of the VDR Aleyasin, A., Hosseini, M. A., Mahdavi, A., Safdarian, L., Fallahi, P., Mohajeri, M. R., Abbasi, M., & Esfahani, F. (2011). Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 159(1), 132–137. https://doi.org/10.1016/j.ejogrb.2011.07.006 © Leah Hechtman 2020 www.naturalhealthfertility.com 43
VITAMIN D: IMPACT TO OVARIAN TISSUE Cholecalciferol stimulates • Progesterone production by 13% • Oestradiol production by 9% • Oestrone production by 21% Parikh, G., Varadinova, M., Suwandhi, P., Araki, T., Rosenwaks, Z., Poretsky, L., & Seto-Young, D. (2010). Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et Metabolisme, 42(10), 754–757. https://doi.org/10.1055/s-0030-1262837 © Leah Hechtman 2020 www.naturalhealthfertility.com 44
VITAMIN D: AMH PATTERNING Vitamin D changes AMH production patterns in ovarian granulosa cells and alters FSH sensitivity • Ovarian follicle development • Ovarian reserve preservation • PCOS women: Abnormal AMH levels normalized with Vitamin D Merhi, Z. (2014). Advanced glycation end products and their relevance in female reproduction. Human Reproduction, 29(1), 135–145. https://doi.org/10.1093/humrep/det383 Dabrowski, F., Grzechocinska, B., & Wielgos, M. (2015). The Role of Vitamin D in Reproductive Health—A Trojan Horse or the Golden Fleece? Nutrients, 7(6), 4139–4153. https://doi.org/10.3390/nu7064139 © Leah Hechtman 2020 www.naturalhealthfertility.com 45
PROPOSED ASSOCIATIONS OF VITAMIN D STATUS WITH FEMALE REPRODUCTION Lerchbaum, E., & Obermayer-Pietsch, B. (2012). Vitamin D and fertility: A systematic review. European Journal of Endocrinology, 166(5), 765–778. https://doi.org/10.1530/EJE-11-0984 © Leah Hechtman 2020 www.naturalhealthfertility.com 46
VITAMIN D: TRANSLATE INTO PRACTICE Form and delivery Dose Frequency Duration of treatment Response prediction and outcome assessment © Leah Hechtman 2020 www.naturalhealthfertility.com 47
Thank you © Leah Hechtman 2020 www.naturalhealthfertility.com 48
Q&A © Leah Hechtman 2020 www.naturalhealthfertility.com 49
You can also read