Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive

Page created by Herman Wolf
 
CONTINUE READING
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Subaru Telescope
 Current – Future Plan
      2016 - 2022

    Nobuo ARIMOTO
    Subaru Telescope
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Subaru Telescope
   Powerful Staff
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
3
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Subaru Telescope
Classical Nova Explosions are Major Lithium Factories in the
                Universe (Tajitsu et al. 2015)

                           Classical	
  novae	
  are	
  strong	
  candidates	
  as	
  
                                suppliers	
  of	
  Li	
  in	
  the	
  universe.	
   4
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Subaru Telescope
     Rapid evolutionary transition revealed
in massive quenched galaxies (Onodera et al. 2015)
         Composite Rest-frame Optical Spectrum of
              24 pBzK Galaxies at =1.6
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Subaru Telescope
 Subaru Telescope Detects Sudden Appearance of Galaxies
                  in the Early Universe

A team of astronomers using the Subaru Telescope's Suprime-Cam to perform
the Subaru Ultra-Deep Survey for Lyman-alpha Emitters have looked back
more than 13 billion years to find 7 early galaxies that appeared quite suddenly
within 700 million years of the Big Bang (Konno et al. 2014).
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Change of Subaru Operations

           Current                        Future
 Wide variety of instruments       Emphasis on surveys
    Classical observations      Queue/Remote observations
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Instrument Timeline
 (Decommission Plan)
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Hyper Suprime-Cam has started
   Open-use in March 2014
Subaru Telescope Current - Future Plan 2016 2022 - Nobuo ARIMOTO Subaru Telescope - Gemini Observatory Web Archive
Hyper-Suprime-Cam (HSC)

                   HSC
Subaru Telescope
     Wide Field View & Sharpe Images
• Quicker, Wider, Deeper, Sharper

                                                           HST

                              The current SprimeCam image (M. Oguri)
                                                            HSC
                              Galaxy cluster	
          Field of View

                              ~50,000 galaxy images
HSC Survey Area
                               HSC-D

                                     R.A.

                                                            HSC-W

                                   HSC-D/UD
DEC
                               Galactic Extinction E(B-V)

      • HSC Survey Area
        – Include the previous surveis
                                                    Subaru Strategic Program
        – Little absorption by dust                      2014-2020
        – Observable whole year                           300 Nights
Image Quality of HSC
 So far ~1.5 nights (Subaru has 8 instruments), but soon ~15nights
 Subaru HSC image (riz: ~2.5hrs)	
    COSMOS HST (640 orbits: ~500hrs)
• a

    Data reduced by HSC pipeline
    (NAOJ, Princeton, Kavli IPMU)	
            Hubble Telescope
HSC Sky Mapping
Kavli IPMU,
   U. Tokyo
PFS project office
… in Prime focus
                  unit “POpt2” with
                 Wide Field Corrector
                         “WFC”.
Spectrograph
system (SpS)
On the forth
    floor

               POpt2 & WFC will be
                shared with Hyper
               Suprime Cam (HSC).

                Software system

               Calibration system
Spectrograph System
            “Red”

                          Mid. Res. Mode in the Red Arm

                      “NIR”
“Blue”
Red
                                      Blue	
                                             NIR
                                                       Low Res	
       Mid Res
Collimator F/#	
                                                   2.5
Camera F/#	
                                                       1.1
# of science fibers	
                                         597 or 600
Operating temperature	
                                     3 +/- 0.5 degC
Input fiber core diameter	
                                       129um
Wavelength coverage	
               380-650nm	
       630-970nm	
 710-885nm	
        940-1260nm
Resolving power	
                     ~2300	
           ~3000	
            ~5000	
      ~4300
                                       CCD         CCD (Hamamatsu, with H4RG (Teledyne,
                                 (Hamamatsu, with the same coating as HSC)	
 1.7um cutoff)
               Type
                                    a new blue
Detector	
                           coating)
               Format	
           (4K x 2K) x 2	
           (4K x 2K) x 2	
            4K x 4K
               Pixel size	
                                       15um
               Readout noise	
                      ~4 e-/pix	
                         4 e-/pix
               Dark	
                           ~0.4 e-/pix/hour	
                   0.01 e-/pix/s
Thermal background	
                                 None	
                          0.006 e-/pix/s
Three Pillars of Subaru/PFS
         Survey Science

• Cosmology (100-120 nights)

• Galaxy & AGN evolution (100-120 nights)

• Galactic Archaeology (100-120 nights)
ULTIMATE-Subaru
                                       4 Lasers
                                     (side irradiation)

                                     Deformable
                                     secondary
                                       mirror
NIR inst.
                                      Wave front
    14’ FoV	
                          sensor
Multi-Object IFU
Wide-field Camera
Science of ULTIMATE Subaru
• Dissect the Galactic Evolution of the Golden Age
 – Sample of a few 1000 galaxies at 17.5, physical process of cosmic re-
   ionization
• → Subaru Original Samples for TMT
       • Sampling of the most interesting targets cannot be done
         by HSC + PFS alone.
• Improvement of Telescope Performance - contributing to
  various science
SCExAO                                                                                         Properties:	
  	
  
                                                                                          Single	
  object	
  AO	
  
                                                                                     Narrow	
  field-­‐of-­‐view	
  	
  (
SCExAO visible images
FWHM 17mas
Resolves some stars

                        Lucky-­‐Imaging	
  in	
  Visible
Speckle nulling on-sky results

              Sum	
  of	
  5000	
  frames:	
  shift	
  and	
  add	
  

                    Speckle	
  controlled	
  region
    Most	
  of	
  the	
  quasi-­‐sta=c	
  speckles	
  are	
  removed
    High-­‐contrast	
  for	
  exo-­‐planet	
  detec=on
CHARIS – Integral Field Spectrograph (2016)

                                                                              Prism Slider

Major Science Objective:
Spectral characterization of Exoplanets,
Disks, Brown dwarfs
2.07”x2.07” FOV

LOW RESOLUTION MODE:
  R~19, J+H+K Band
  65-70% instrument throughput, 15% (10% K) from atmosphere to detector

HIGH RESOLUTION MODE:
  R~70-90: J,H, and K Bands
  55-60% instrument throughput, ~15% from atmosphere to detector

New technology contributions: Crosstalk Mitigation and New Dispersion Modes
Infrared	
  Doppler	
  (IRD)
• High-­‐resolu=on,	
  NIR	
  spectrograph	
  for	
  exo-­‐planet	
  detec=on	
  by	
  radial	
  
  velocity	
  (RV)	
  method	
  (PI:	
  Tamura,	
  M.,	
  Univ.	
  of	
  Tokyo)	
  

• Use	
  a	
  laser	
  frequency	
  comb	
  to	
  achieve	
  very	
  high	
  RV	
  precision	
  (~1m/
  s)	
  

• Planning	
  a	
  large	
  survey	
  (~170	
  nights)	
  for	
  detec=ng	
  exo-­‐planets	
  
  around	
  nearby	
  M-­‐dwarfs.	
  	
  
     1. Detec=on	
  of	
  ~10	
  habitable	
  Earth-­‐like	
  planets	
  around	
  nearby	
  M	
  dwarfs.	
  
     2. Sta=s=cal	
  studies	
  of	
  planet	
  forma=on	
  around	
  low-­‐mass	
  stars	
  with	
  more	
  
        than	
  50	
  detec=ons	
  of	
  exo-­‐planets	
  including	
  Earth	
  mass	
  planets.	
  

• The	
  instrument	
  is	
  being	
  developed	
  with	
  the	
  aim	
  of	
  having	
  first	
  light	
  
  at	
  the	
  end	
  of	
  2015,	
  and	
  star=ng	
  the	
  survey	
  in	
  2016.	
  
Overview of the IRD instrument

Laser Comb
                                                                      Mode scrambler

                                                              Resolution: R=70000
                                                              Wavelength: 0.97-1.75um
                   Star light                                 Cryo: 60K (detector), 200K (optics)
                   From AO

  Fiber injection system
       (AO bench)

                                                     Fiber
                                Fiber                (star)
                                (Comb)

                                          spectrometer

   Laser frequency comb                                             Spectrometer system
    (IR Observing floor)                 Coudé Room                    (Coudé room)
RAVEN Project
International Collaboration
– Canada (Uvic/NRC-HA) and Japan (Subaru/Tohoku Univ)
– 6M CAD over 4 years
First MOAO demonstrator on 8m (First light in 2014)
– Multi-Object Adaptive Optics
– For future development for 30m
Science Observation in 2015

                                 Up: schematic diagram of future MOAO on 30m
                                 Left: 3D CAD model of RAVEN optical bench
RAVEN Results
                                                  The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have
                                                  been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the
                                                  image and then insert it again.

At Nasmyth focus w/ IRCS behind

                                  Simultaneously observed echelle spectra (the middle
      MOAO correction             two) compared with reference spectra (top & bottom).
Strategy from Subaru to TMT
    2012 2014 2016 2018 2020	
 2022 2024	
 2026	
 2028
                TMT Construction
                Subaru Operation	
                     Subaru/TMT Operation
               Dark Matter Distribution	
      Origin of Dark Matter

                            20 Earth-like Habitable Search for H2O/O2 Planets
  TMT                               Planets
 Detailed                                     A few Million
                                              Emission-line Origin of Dark Energy
 Research	
                                     Galaxies

                                                           100 z>7.5
                                                                         Re-ionization
                                                           Galaxies
       HSC        Wide Field Survey

IRD・CHARIS    Earth-like Planets, Young Planets
   Subaru                 PFS      Expanding Universe
    Wide
                ULTIMATE-Subaru	
            Ultra high-z galaxies
   Survey	
                                                                         31
You can also read