Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) - Alrun Tessendorf, Thomas ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) Alrun Tessendorf, Thomas Einfalt hydro & meteo GmbH & Co. KG Markus Quirmbach dr. papadakis GmbH
Overview Introduction Data and research area Downscaling procedure Evaluation of the results Summary and conclusion
Introduction: dynaklim dynaklim: dynamical adaptation of regional planning and development processes in the Emscher-Lippe-Region (North-Rhine-Westphalia) effect of climate change on regional precipitation Focus on extreme events: heavy rain as a potential risk for urban flash floods
Introduction: dynaklim dynaklim: dynamical adaptation of regional planning and development processes in the Emscher-Lippe-Region (North-Rhine-Westphalia) effect of climate change on regional precipitation Focus on extreme events: heavy rain as a potential risk for urban flash floods Generation of input data for small-scale hydrological models and hydrodynamic sewer models
Introduction Small-scale hydrological models and hydrodynamic sewer models require input data with high spatial and temporal resolution: adjusted radar QPE
Introduction Small-scale hydrological models and hydrodynamic sewer models require input data with high spatial and temporal resolution: adjusted radar QPE Idea: using adjusted radar data for a statistical downscaling of regional climate model data
Introduction: statistical downscaling classification method: • Classification by weather type: basis for assignment of historical data • Assumption: the model can better reproduce the large-scale weather situation than parameters on a smaller scale analogue method: • Selection of analogue weather events from historical measurements, based on a comparison of model and measurement data stochastic weather generators • combination of the methods
Introduction: statistical downscaling classification method: • Classification by weather type: basis for assignment of historical data • Assumption: the model can better reproduce the large-scale weather situation than parameters on a smaller scale analogue method: • Selection of analogue weather events from historical measurements, based on a comparison of model and measurement data stochastic weather generators • combination of the methods Analogue method with predictors daily sum and objective weather type (DWD)
Data and research area Regional climate model CLM provided by the Climate Service Center (CSC) : Scenario A1B, run 1 and run 2 Reference period: 1961-1990 (“C20”) , Near Future: 2021-2050 + Far Future: 2071-2100 • Daily sums • Objective weather types (Krahé et al., 2011)
Data and research area Measurement data: Corrected and adjusted data from radar Essen (DWD, 1km x 1 , 5min, DX-product), 01.11.2001 – 01.11.2009 • Adjustment based on 580 controlled rain gauges (117 for validation) Objective weather types (daily, measurements of the DWD)
Data and research area Research area: 10 CLM grid points in the Emscher-Lippe Region (North-Rhine Westphalia) • Selection of the area: based on similar precipitation characteristics and orographic conditions. • Production of data for 3 catchments near Dortmund, Duisburg and Bönen, catchment size 70-76 km² GP_088_092 GP_088_093 GP_088_094 GP_088_095 GP_088_087 GP_088_088 GP_088_089 GP_088_090 GP_088_091 Rorup Dülmen GP_087_094 GP_087_095 GP_087_091 GP_087_092 GP_087_093 GP_087_087 GP_087_088 GP_087_089 GP_087_090 Lembeck Werne-Wessels DWD Herringen Werne Welver DWD GP_086_096 GP_086_092 GP_086_094 GP_086_095 GP_086_091 GP_086_093 GP_086_088 GP_086_089 GP_086_090 GP_086_087 Recklinghausen Im Reitwinkel Soest DWD Gladbeck Hahnenbach Dortmund Nettebach Dinslaken Emschermündung GP_085_096 GP_085_094 GP_085_095 GP_085_091 GP_085_092 GP_085_093 GP_085_087 GP_085_088 GP_085_089 GP_085_090 GP_084_092 GP_084_093 GP_084_094 GP_084_095 GP_084_087 GP_084_088 GP_084_089 GP_084_090 GP_084_091
Data and research area Precipitation distribution from radar of a convective event on 12 August 2005: 24h-rain sums on 12 Aug 2005, rain sums are 1-22 mm (left) and 7-31 mm (right)
Downscaling procedure, overview: CLM-Data Selection Bias Adjusted radar • obj. weather types procedure • daily sums correction • based on daily data (2001-2009) • 2 runs (CLM 1 + 2) • daily sums sums/ obj. • ∆t 5 min weather types • 1km x 1 Rain gauge data Data set downscaling (1961-1990) Evaluation • ∆t 5 min, 1km x 1km • quality controlled • Dortmund, Duisburg, Bönen • 28 stations • 1961-90 • 2021-50, 2071-100
Bias correction and use of the daily sums Bias correction of daily sums: Piani et al. (2010) Used data: • area means on CLM grid points from radar (2001-2009) • CLM data from 2 runs As RCM values on single grid points are less reliable than averages over several grid points: • daily sums statistically averaged over 10 grid points using the cumulated PDF
Downscaling procedure: selection algorithm For each day from CLM: search for similar days from the measurement period. Criteria: daily sum (close interval around the given value) and objective weather type If no similar days are found: stepwise increase of the interval and inclusion of neighboring weather types Several days are found: random selection of one day
Downscaling procedure: selection algorithm For each day from CLM: search for similar days from the measurement period. Criteria: daily sum (close interval around the given value) and objective weather type If no similar days are found: stepwise increase of the interval and inclusion of neighboring weather types Several days are found: random selection of one day Increase of the data-base by: Permitting spatial displacement of the radar data within the 10 grid points of the research area making use of the similar precipitation characteristics within the research area disadvantage: neglect of small-scale orographic effects
Downscaling procedure selection process • performed for each catchment separately Selection results checked on: • Frequency of use of radar events (max. 3 times / 30 years) • selection effect (Young 1994) - Restrictive criteria in the selection process affecting the selection of extreme events • discrepancies of the daily sum > 4mm
Downscaling procedure selection process • performed for each catchment separately Selection results checked on: • Frequency of use of radar events (max. 3 times / 30 years) • selection effect (Young 1994) - Restrictive criteria in the selection process effecting the selection of extreme events • discrepancies of the daily sum > 4mm discrepancies of the daily sum > 4 mm: 2-4 events per 30-year period modification of the radar event with a constant factor to catch the 24h-sum of the model event
procedure • High resolution radar data used to produce time series for the catchments (on each 1x1km² field) Time series evaluated using extreme value statistics • evaluation by duration and return period (following the DVWK rules for water management 124/1985) • Evaluation for the reference period, near and far future
Validation: Reference period Extreme precipitation (1h, 5a), comparison of station mean from 28 stations and downscaling results in the reference period Extreme precipitation (1h,5a) within the catchments, catchment size is 70-76 km²
Results: trend analysis CLM 1 CLM 2 Extreme precipitation (1h, 5a) for reference period (1961-90), near future (2021-50) and far future. The shaded uncertainty area is 10% (according to KOSTRA). • CLM 1 shows significant positive trends (+18.8% / + 16.4%) • CLM 2 trends are weaker and less significant (+16.4% / +8.8%)
Summary and conclusion • Generation of high resolution data with natural characteristics on a sub-daily scale possible • Data can be used as input to small-scale hydrological models run-off model of Rossbach catchment near Dortmund: reasonable results in comparison to observations • Requirement: good measurement data base with the needed spatial resolution
Summary and conclusion Problems to overcome: • Reliable Bias correction of the daily values (with regard to the effect on climate trends) • Ensemble evaluation high effort because combination of climate model runs and runs of the statistical downscaling model is necessary considerable size of the produced data sets (high resolution) • Uncertainties have to be communicated to the end-users, e.g. general model uncertainties (statistical downscaling: do the used relationships hold in the future) uncertainty of extreme events -> high uncertainty intervals in model and observations
References Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (1985): Niederschlag- Starkregenauswertung nach Wiederkehrzeit und Dauer, DVWK Regeln zur Wasserwirtschaft 124/1985 DWD (2005): KOSTRA-DWD-2000, Starkniederschlagshöhen für Deutschland (1951-2000), Grundlagenbericht. Offenbach am Main. hydro & meteo (2009): The SCOUT Documentation version 3.30. Lübeck, 69 Seiten Krahé, P., E. Nilson, U. Gelhardt und J. Lang (2010): Thank you for Auswertungen ausgewählter globaler Klimamodelle hinsichtlich atmosphärischer Zirkulationsbedingungen im Nordatlantisch- Mitteleuropäischen Sektor. BfG-Bericht 1682. your attention! Piani, C., J.O. Haerter und E. Coppala (2010): Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99, 187-192. Young, K. (1994): A multivariate chain model for simulating climatic parameters from daily data, J. Appl. Meteorol., 33(6), 661-671. Zorita, E. und H. von Storch,(1999): The analog method as a simple statistical downscaling technique: Comparison with more complicated methods, J. Clim., 12, 2474-2489
Result Preliminary result: hydrological run-off model Rossbach catchment (Dortmund): Reference period 1960-90: Entwicklung der statistischen Abflussscheitel (T = 20 a) an der Mündung Rossbach (PSe) 20 18 16 Abflussscheitel [m³/s] 14 12 10 8 6 4 2 0 1961-1990 2021-2050 2071-2100 Station/1,3 CLM1 CLM2
Zusammenfassung und Ausblick Das radarbasierte Downskaling zeigt, dass - das Herunterbrechen von CLM-Daten auf eine in der Stadthydrologie nutzbare Auflösung möglich ist - die Daten etwa im Bereich > 30 Minuten oder seltener als 1x pro Jahr eingesetzt werden können - die Schwankungsbreite der Ergebnisse in der Statistik höher ist als zwischen Messstationen - zusätzliche Analysen und Empfehlungen für den Einsatz der Daten erforderlich sind
Vielen Dank für Ihre Aufmerksamkeit ! Kontakt: Projektleiter Arbeitspaket AP 3.1: „Aufbereitung und Bereitstellung der Klimadaten für die Prognosemodelle“ Dr. Markus Quirmbach dr. papadakis GmbH Tel.: 02324/904489-1 Mail: m.quirmbach@drpapadakis.de
Downscaling procedure
Downscaling procedure
Downscaling procedure Matched results, 2009
Downscaling procedure Selection effect • caused by close criteria in the selection process • Result: unrealistic low extreme events
You can also read