Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) - Alrun Tessendorf, Thomas ...

Page created by Brent Mcguire
 
CONTINUE READING
Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) - Alrun Tessendorf, Thomas ...
Statistical downscaling of CLM precipitation
 data with an analogue method using radar
 data of radar Essen (DWD)

 Alrun Tessendorf, Thomas Einfalt
 hydro & meteo GmbH & Co. KG
 Markus Quirmbach
 dr. papadakis GmbH
Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) - Alrun Tessendorf, Thomas ...
Overview

 Introduction
 Data and research area
 Downscaling procedure
 Evaluation of the results
 Summary and conclusion
Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) - Alrun Tessendorf, Thomas ...
Introduction: dynaklim

dynaklim:
dynamical adaptation of regional planning and development processes
in the Emscher-Lippe-Region (North-Rhine-Westphalia)
     effect of climate change on regional precipitation
    Focus on extreme events: heavy rain as a potential risk for urban
    flash floods
Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) - Alrun Tessendorf, Thomas ...
Introduction: dynaklim

dynaklim:
dynamical adaptation of regional planning and development processes
in the Emscher-Lippe-Region (North-Rhine-Westphalia)
     effect of climate change on regional precipitation
    Focus on extreme events: heavy rain as a potential risk for urban
    flash floods

     Generation of input data for small-scale hydrological models and
      hydrodynamic sewer models
Introduction

   Small-scale hydrological models and hydrodynamic sewer models
   require input data with high spatial and temporal resolution:
    adjusted radar QPE
Introduction

   Small-scale hydrological models and hydrodynamic sewer models
   require input data with high spatial and temporal resolution:
    adjusted radar QPE

   Idea: using adjusted radar data for a statistical downscaling of
   regional climate model data
Introduction: statistical downscaling

classification method:
    •   Classification by weather type: basis for assignment of historical data
    •   Assumption: the model can better reproduce the large-scale weather
        situation than parameters on a smaller scale

analogue method:
    •   Selection of analogue weather events from historical measurements,
        based on a comparison of model and measurement data

stochastic weather generators

• combination of the methods
Introduction: statistical downscaling

classification method:
    •   Classification by weather type: basis for assignment of historical data
    •   Assumption: the model can better reproduce the large-scale weather
        situation than parameters on a smaller scale

analogue method:
    •   Selection of analogue weather events from historical measurements,
        based on a comparison of model and measurement data

stochastic weather generators

• combination of the methods

Analogue method with predictors daily sum and objective weather
type (DWD)
Data and research area

Regional climate model CLM
provided by the Climate Service Center (CSC) :
Scenario A1B, run 1 and run 2
Reference period: 1961-1990 (“C20”) ,
Near Future: 2021-2050 + Far Future: 2071-2100
• Daily sums
• Objective weather types (Krahé et al., 2011)
Data and research area

Measurement data:
Corrected and adjusted data from radar Essen (DWD, 1km x 1 , 5min,
DX-product), 01.11.2001 – 01.11.2009
• Adjustment based on 580 controlled rain gauges (117 for validation)

Objective weather types (daily, measurements of the DWD)
Data and research area

Research area: 10 CLM grid points in the Emscher-Lippe Region
(North-Rhine Westphalia)
• Selection of the area: based on similar precipitation characteristics
  and orographic conditions.
• Production of data for 3 catchments near Dortmund, Duisburg and
  Bönen, catchment size 70-76 km²

                                                                                                 GP_088_092        GP_088_093     GP_088_094       GP_088_095
          GP_088_087        GP_088_088    GP_088_089         GP_088_090         GP_088_091

                                                                           Rorup

                                                                              Dülmen

                                                                                                                                    GP_087_094     GP_087_095
                                                                                GP_087_091       GP_087_092        GP_087_093
          GP_087_087        GP_087_088    GP_087_089         GP_087_090

                                                Lembeck
                                                                                                                Werne-Wessels DWD

                                                                                                                   Herringen
                                                                                                          Werne

                                                                                                                                      Welver DWD         GP_086_096
                                                                                                  GP_086_092                        GP_086_094      GP_086_095
                                                                                   GP_086_091                       GP_086_093
                             GP_086_088   GP_086_089      GP_086_090
          GP_086_087
                                                                       Recklinghausen Im Reitwinkel                                                Soest DWD

                                                  Gladbeck Hahnenbach                   Dortmund Nettebach
                       Dinslaken Emschermündung

                                                                                                                                                          GP_085_096

                                                                                                                                     GP_085_094      GP_085_095
                                                                                   GP_085_091     GP_085_092         GP_085_093
          GP_085_087         GP_085_088    GP_085_089         GP_085_090

                                                                                                   GP_084_092        GP_084_093       GP_084_094      GP_084_095
           GP_084_087        GP_084_088      GP_084_089       GP_084_090           GP_084_091
Data and research area

    Precipitation distribution from radar of a convective event
    on 12 August 2005:

                  24h-rain sums on 12 Aug 2005, rain sums
                  are 1-22 mm (left) and 7-31 mm (right)
Downscaling procedure, overview:

    CLM-Data                                            Selection
                                    Bias                                       Adjusted radar
• obj. weather types                                    procedure
• daily sums                     correction            • based on daily
                                                                              data (2001-2009)
• 2 runs (CLM 1 + 2)             • daily sums             sums/ obj.          • ∆t 5 min
                                                        weather types         • 1km x 1

           Rain gauge data                        Data set downscaling
             (1961-1990)         Evaluation     • ∆t 5 min, 1km x 1km
          • quality controlled                  • Dortmund, Duisburg, Bönen
          • 28 stations                         • 1961-90
                                                • 2021-50, 2071-100
Bias correction and use of the daily sums

Bias correction of daily sums: Piani et al. (2010)
Used data:
• area means on CLM grid points from radar (2001-2009)
• CLM data from 2 runs

As RCM values on single grid points are less reliable than averages over
several grid points:
• daily sums statistically averaged over 10 grid points using the
  cumulated PDF
Downscaling procedure: selection algorithm

For each day from CLM: search for similar days from the measurement
period. Criteria: daily sum (close interval around the given value) and
objective weather type
If no similar days are found: stepwise increase of the interval and
inclusion of neighboring weather types
Several days are found: random selection of one day
Downscaling procedure: selection algorithm

For each day from CLM: search for similar days from the measurement
period. Criteria: daily sum (close interval around the given value) and
objective weather type
If no similar days are found: stepwise increase of the interval and
inclusion of neighboring weather types
Several days are found: random selection of one day

Increase of the data-base by:
Permitting spatial displacement of the radar data within the 10 grid
points of the research area
        making use of the similar precipitation characteristics within the research area
        disadvantage: neglect of small-scale orographic effects
Downscaling procedure

selection process
• performed for each catchment separately

Selection results checked on:
• Frequency of use of radar events (max. 3 times / 30 years)
• selection effect (Young 1994)
    - Restrictive criteria in the selection process affecting the selection of extreme events

• discrepancies of the daily sum > 4mm
Downscaling procedure

selection process
• performed for each catchment separately

Selection results checked on:
• Frequency of use of radar events (max. 3 times / 30 years)
• selection effect (Young 1994)
    - Restrictive criteria in the selection process effecting the selection of extreme events

• discrepancies of the daily sum > 4mm

discrepancies of the daily sum > 4 mm: 2-4 events per 30-year period
     modification of the radar event with a constant factor to catch
      the 24h-sum of the model event
procedure

• High resolution radar data used to produce time series for the
  catchments (on each 1x1km² field)

Time series evaluated using extreme value statistics
• evaluation by duration and return period (following the DVWK
   rules for water management 124/1985)

• Evaluation for the reference period, near and far future
Validation: Reference period

      Extreme precipitation (1h, 5a), comparison of station mean from
      28 stations and downscaling results in the reference period

    Extreme precipitation (1h,5a) within the catchments, catchment size is
    70-76 km²
Results: trend analysis

     CLM 1                                    CLM 2
Extreme precipitation (1h, 5a) for reference period (1961-90), near future (2021-50)
and far future. The shaded uncertainty area is 10% (according to KOSTRA).

• CLM 1 shows significant positive trends (+18.8% / + 16.4%)
• CLM 2 trends are weaker and less significant (+16.4% / +8.8%)
Summary and conclusion

• Generation of high resolution data with natural characteristics
  on a sub-daily scale possible
• Data can be used as input to small-scale hydrological models
      run-off model of Rossbach catchment near Dortmund:
      reasonable results in comparison to observations
• Requirement: good measurement data base with the needed
  spatial resolution
Summary and conclusion

Problems to overcome:
• Reliable Bias correction of the daily values
   (with regard to the effect on climate trends)
• Ensemble evaluation
       high effort because combination of climate model runs and
       runs of the statistical downscaling model is necessary
       considerable size of the produced data sets (high resolution)

• Uncertainties have to be communicated to the end-users, e.g.
     general model uncertainties (statistical downscaling: do the
     used relationships hold in the future)
     uncertainty of extreme events
      -> high uncertainty intervals in model and observations
References

Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.
(1985): Niederschlag- Starkregenauswertung nach
Wiederkehrzeit und Dauer, DVWK Regeln zur Wasserwirtschaft
124/1985
DWD (2005): KOSTRA-DWD-2000, Starkniederschlagshöhen für
Deutschland (1951-2000), Grundlagenbericht. Offenbach am
Main.
hydro & meteo (2009): The SCOUT Documentation version 3.30.
Lübeck, 69 Seiten
Krahé, P., E. Nilson, U. Gelhardt und J. Lang (2010):                Thank you for
Auswertungen ausgewählter globaler Klimamodelle hinsichtlich
atmosphärischer Zirkulationsbedingungen im Nordatlantisch-
Mitteleuropäischen Sektor. BfG-Bericht 1682.
                                                                     your attention!
Piani, C., J.O. Haerter und E. Coppala (2010): Statistical bias
correction for daily precipitation in regional climate models over
Europe. Theor. Appl. Climatol. 99, 187-192.
Young, K. (1994): A multivariate chain model for simulating
climatic parameters from daily data, J. Appl. Meteorol., 33(6),
661-671.
Zorita, E. und H. von Storch,(1999): The analog method as a
simple statistical downscaling technique: Comparison with more
complicated methods, J. Clim., 12, 2474-2489
Result

Preliminary result: hydrological run-off model Rossbach catchment
(Dortmund):
Reference period 1960-90:
                              Entwicklung der statistischen Abflussscheitel (T = 20 a)
                                        an der Mündung Rossbach (PSe)
                         20
                         18
                         16
Abflussscheitel [m³/s]

                         14
                         12
                         10
                         8
                         6
                         4
                         2
                         0
                                  1961-1990                  2021-2050          2071-2100
                                               Station/1,3     CLM1      CLM2
Zusammenfassung und Ausblick

    Das radarbasierte Downskaling zeigt, dass
     - das Herunterbrechen von CLM-Daten auf eine in der Stadthydrologie nutzbare Auflösung
     möglich ist
     - die Daten etwa im Bereich > 30 Minuten oder seltener als 1x pro Jahr eingesetzt werden
     können
     - die Schwankungsbreite der Ergebnisse in der Statistik höher ist als zwischen Messstationen
     - zusätzliche Analysen und Empfehlungen für den Einsatz der Daten erforderlich sind
Vielen Dank
für Ihre Aufmerksamkeit !

Kontakt:
Projektleiter Arbeitspaket AP 3.1: „Aufbereitung und Bereitstellung
der Klimadaten für die Prognosemodelle“
Dr. Markus Quirmbach
dr. papadakis GmbH
Tel.: 02324/904489-1
Mail: m.quirmbach@drpapadakis.de
Downscaling procedure
Downscaling procedure
Downscaling procedure

                        Matched results, 2009
Downscaling procedure

                        Selection effect

                        • caused by close
                          criteria in the
                          selection process

                        • Result:
                          unrealistic low
                          extreme events
You can also read