Raffaele Argiento Presentazione ai dottorandi: The Cattolica reseach group - Bicocca
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Presentazione ai dottorandi: The Cattolica reseach group Raffaele Argiento raffaele.argiento@unicatt.it Bicocca Milano, 24 Settembre 2020 R. Argiento Milano, 24 Settembre
Presentazione ai dottorandi: The Cattolica reseach group Raffaele Argiento raffaele.argiento@unicatt.it Bicocca Milano, 24 Settembre 2020 R. Argiento Milano, 24 Settembre
Applications: Biostatistics Collaborations: Rice University & MD Anderson, TX USA – Na- tional Univerisy of Singapore (NUS) – College of Public Healt, National Taiwan University. R. Argiento Milano, 24 Settembre
Applications: Biostatistics Collaborations: Rice University & MD Anderson, TX USA – Na- tional Univerisy of Singapore (NUS) – College of Public Healt, National Taiwan University. Microbiome data: modelling the association between bacteria taxa e nutrients R. Argiento Milano, 24 Settembre
Applications: Biostatistics Collaborations: Rice University & MD Anderson, TX USA – Na- tional Univerisy of Singapore (NUS) – College of Public Healt, National Taiwan University. Microbiome data: modelling the association Population structure: Genetic Diversity between bacteria taxa e nutrients (subpopulations) R. Argiento Milano, 24 Settembre
Applications: Biostatistics Data Privacy Collaborations: University of Firenze – University of Modena e Reggio Emilia – National Technical University of Athens. Protein data: Discover relationship between proteins, causal inference R. Argiento Milano, 24 Settembre
Applications: Data Privacy Collaborations: Università della Svizzera Italiana – Axa – Protein data: Discover relationship between Fraud detection: shorten the delay from the proteins, causal inference occurrence of the fraud to its detection; R. Argiento Milano, 24 Settembre
Applications: Sport Data & Healthcare Collaborations: Kent University (UK) – Università di Torino – Po- litecnico Milano – Victoria University, Melbourne (AUS) R. Argiento Milano, 24 Settembre
Applications: Sport Data & Healthcare Collaborations: Kent University (UK) – Università di Torino – Po- litecnico Milano – Victoria University, Melbourne (AUS) Sport analytics: performances predictions, doping detection R. Argiento Milano, 24 Settembre
Applications: Sport Data & Healthcare Collaborations: Kent University (UK) – Università di Torino – Po- litecnico Milano – Victoria University, Melbourne (AUS) Sport analytics: performances predictions, Avis data: Clustering donors for customized doping detection advertising R. Argiento Milano, 24 Settembre
Applications: Atmospheric Environment • Air pollution is a major global environmental risk to human health (WHO, 2018) • We are simultaneously exposed to a complex mixture of air pollutants • Moving toward a multi-pollutant approach to air quality R. Argiento Milano, 24 Settembre
Applications: Atmospheric Environment • Air pollution is a major global environmental risk to human health (WHO, 2018) • We are simultaneously exposed to a complex mixture of air pollutants • Moving toward a multi-pollutant approach to air quality 4 • A better understanding of the interactions between air pollutants is µg m3 2 critical • Learning dependencies among 0 multiple time series −2 C6H6 NO2 SO2 O3 PM2.5 BC 2014/01/01 2014/07/02 2014/12/09 2015/05/27 2016/01/14 2016/09/20 2017/04/30 2017/10/25 2018/04/05 2018/10/11 R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) ∼ Norm − CRM Histogram of y 0.4 0.3 Density 0.20.1 0.0 −4 −2 0 2 4 y R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) ∼ Norm − CRM Histogram of y 0.4 0.3 Density 0.20.1 0.0 −4 −2 0 2 4 y R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) ∼ Norm − CRM Histogram of y 0.4 0.3 Density 0.20.1 0.0 −4 −2 0 2 4 y R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) ∼ Norm − CRM Histogram of y 0.4 0.3 Density 0.20.1 0.0 −4 −2 0 2 4 y R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) ∼ Norm − CRM Histogram of y 0.4 0.3 Density 0.20.1 0.0 −4 −2 0 2 4 y R. Argiento Milano, 24 Settembre
Mixture models in Bayesian nonparametrics Hierarchical modelling ind. Y1 , ..., Yn |θ1 , ..., θn ∼ f (yi |θi ) i.i.d. θ1 , ..., θn |P ∼ P d P P(·) = ∞ h=1 wh δτh (·) ∼ Norm − CRM Ongoing works (a) Dependent processes Px , to include covariate information (b) A general class of dependent models that encompasses many specific structures (c) Scalable algorithms for fast inference Selected Publications • Argiento, R., Cremaschi, A. and Vannucci, M. (2019). “Hierarchical Normalized Completely Random Measures to Cluster Grouped Data”, Journal of the American Statistical Association. Just accepted. • Cremaschi, A., Argiento, R., Shoemaker, K., Peterson, C.B. and Vannucci M. (2019). “Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling”. Bayesian Analysis. Just accepted. • Argiento R., Ruggiero, M. (2018). “Computational challenges and temporal dependence in Bayesian nonparametric models”, Statistical Methods and Applications, Volume 27, R. Argiento Milano, 24 Settembre
Graphical modelling Graph theory 1 1 G = (V, E) 6 6 • finite set of vertices V = {1, . . . , q} 3 3 5 5 • subset of edges 2 2 E ⊆V ×V 4 4 Nodes ⇔ Random variables Figure: Directed (left) and undirected (right) graphs. Edges ⇔ Probabilistic relationships R. Argiento Milano, 24 Settembre
Graphical modelling Graph theory 1 1 G = (V, E) 6 6 • finite set of vertices V = {1, . . . , q} 3 3 5 5 • subset of edges 2 2 E ⊆V ×V 4 4 Nodes ⇔ Random variables Figure: Directed (left) and undirected (right) graphs. Edges ⇔ Probabilistic relationships Graphical model 3 Family of probability distributions for the q random variables which factorizes according to a given graph. 3 Conditional independencies are read from the graph. R. Argiento Milano, 24 Settembre
Graphical modelling Graph theory 1 1 G = (V, E) 6 6 • finiteOngoing set of vertices works V = {1, . . . , q} 3 3 5 5 (a) Objective Bayes Model Selection from Observational • subset Data of edges 2 2 E (b) ⊆ VMultiple × V Graphical Models (c) Estimate Causal effects using Directed Graphical Models 4 4 (c) Dependent graphs, spatio-temporal dependence to capture graphs relationships. Nodes ⇔ Random variables Figure: Directed (left) and undirected (right) graphs. Edges ⇔ Probabilistic relationships Pubblicazioni recenti • Castelletti, F. Consonni, G., Della Vedova, M. L. & Peluso, S. (2018). “Learning Markov equivalence classes of Directed Acyclic Graphs: an GraphicalObjective model Bayes Approach.” Bayesian Analysis 13, 1231–1256. • Castelletti, F. & Consonni, G. (2019). “Objective Bayes model selection of Gaussian interventional essential graphs for the identification of 3 Family signaling pathways.” Annals of Applied Statistics, in-press of probability distributions for the q random variables which factorizes according to a given •graph. Paci, L. & Consonni, G. (2019). “ Structural Learning of Contemporaneous Dependencies in Graphical VAR models”, Invited revision 3 Conditional independencies are read from the graph. R. Argiento Milano, 24 Settembre
Scientific Events • Applied Bayesian Statistical School. • Scientific board of BaySM-Bayesian Young Stitistician Meeting. Scientific chair della prossima edizione. • International Society for Bayesian Analysis - ISBA • Società Italiana di Statistica-SIS R. Argiento Milano, 24 Settembre
Scientific Events • Applied Bayesian Statistical School. • Scientific board of BaySM-Bayesian Young Stitistician Meeting. Scientific chair della prossima edizione. • International Society for Bayesian Analysis - ISBA • Società Italiana di Statistica-SIS Lucia Paci, Alessia Pini, Raffaele Argiento, Federico Castelletti, Stefano Peluso, Bruno Buonaguidi, Guido Consonni Grazie! R. Argiento Milano, 24 Settembre
You can also read