Publications de l'équipe - UMR3244 - Dynamique de l'information génétique - Centre de Recherche Institut Curie
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Publications de l’équipe UMR3244 – Dynamique de l’information génétique Année de publication : 2019 Katrin Möller, Sara Sigurbjornsdottir, Asgeir O Arnthorsson, Vivian Pogenberg, Ramile Dilshat, Valerie Fock, Solveig H Brynjolfsdottir, Christian Bindesboll, Margret Bessadottir, Helga M Ogmundsdottir, Anne Simonsen, Lionel Larue, Matthias Wilmanns, Vesteinn Thorsson, Eirikur Steingrimsson, Margret H Ogmundsdottir (2019 Feb 2) MITF has a central role in regulating starvation-induced autophagy in melanoma. Scientific reports : 1055 : DOI : 10.1038/s41598-018-37522-6 Résumé The MITF transcription factor is a master regulator of melanocyte development and a critical factor in melanomagenesis. The related transcription factors TFEB and TFE3 regulate lysosomal activity and autophagy processes known to be important in melanoma. Here we show that MITF binds the CLEAR-box element in the promoters of lysosomal and autophagosomal genes in melanocytes and melanoma cells. The crystal structure of MITF bound to the CLEAR-box reveals how the palindromic nature of this motif induces symmetric MITF homodimer binding. In metastatic melanoma tumors and cell lines, MITF positively correlates with the expression of lysosomal and autophagosomal genes, which, interestingly, are different from the lysosomal and autophagosomal genes correlated with TFEB and TFE3. Depletion of MITF in melanoma cells and melanocytes attenuates the response to starvation- induced autophagy, whereas the overexpression of MITF in melanoma cells increases the number of autophagosomes but is not sufficient to induce autophagic flux. Our results suggest that MITF and the related factors TFEB and TFE3 have separate roles in regulating a starvation-induced autophagy response in melanoma. Understanding the normal and pathophysiological roles of MITF and related transcription factors may provide important clinical insights into melanoma therapy. Konrad Gronke, Pedro P Hernández, Jakob Zimmermann, Christoph S N Klose, Michael Kofoed- Branzk, Fabian Guendel, Mario Witkowski, Caroline Tizian, Lukas Amann, Fabian Schumacher, Hansruedi Glatt, Antigoni Triantafyllopoulou, Andreas Diefenbach (2019 Feb 1) Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature : 249-253 : DOI : 10.1038/s41586-019-0899-7 Résumé Environmental genotoxic factors pose a challenge to the genomic integrity of epithelial cells at barrier surfaces that separate host organisms from the environment. They can induce mutations that, if they occur in epithelial stem cells, contribute to malignant transformation and cancer development. Genome integrity in epithelial stem cells is maintained by an evolutionarily conserved cellular response pathway, the DNA damage response (DDR). The DDR culminates in either transient cell-cycle arrest and DNA repair or elimination of damaged cells by apoptosis. Here we show that the cytokine interleukin-22 (IL-22), produced INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 1
Publications de l’équipe UMR3244 – Dynamique de l’information génétique by group 3 innate lymphoid cells (ILC3) and γδ T cells, is an important regulator of the DDR machinery in intestinal epithelial stem cells. Using a new mouse model that enables sporadic inactivation of the IL-22 receptor in colon epithelial stem cells, we demonstrate that IL-22 is required for effective initiation of the DDR following DNA damage. Stem cells deprived of IL-22 signals and exposed to carcinogens escaped DDR-controlled apoptosis, contained more mutations and were more likely to give rise to colon cancer. We identified metabolites of glucosinolates, a group of phytochemicals contained in cruciferous vegetables, to be a widespread source of genotoxic stress in intestinal epithelial cells. These metabolites are ligands of the aryl hydrocarbon receptor (AhR), and AhR-mediated signalling in ILC3 and γδ T cells controlled their production of IL-22. Mice fed with diets depleted of glucosinolates produced only very low levels of IL-22 and, consequently, the DDR in epithelial cells of mice on a glucosinolate-free diet was impaired. This work identifies a homeostatic network protecting stem cells against challenge to their genome integrity by AhR-mediated ‘sensing’ of genotoxic compounds from the diet. AhR signalling, in turn, ensures on-demand production of IL-22 by innate lymphocytes directly regulating components of the DDR in epithelial stem cells. Nathalie Fretellier, Agnès Granottier, Marlène Rasschaert, Anne-Laure Grindel, Fannie Baudimont, Philippe Robert, Jean-Marc Idée, Claire Corot (2019 Feb 1) Does Age Interfere With Gadolinium Toxicity and Presence in Brain and Bone Tissues?: A Comparative Gadoterate Versus Gadodiamide Study in Juvenile and Adult Rats. Investigative radiology : 54 : 61-71 : DOI : 10.1097/RLI.0000000000000517 Résumé Objectives The main objective of the study was to assess the effect of age on target tissue total gadolinium (Gd) retention after repeated administration of gadodiamide (linear) or gadoterate (macrocyclic) Gd-based contrast agent (GBCA) in rats. The secondary objective was to assess the potential developmental and long-term consequences of GBCA administration during neonatal and juvenile periods. Materials and Methods A total of 20 equivalent human clinical doses (cumulated dose, 12 mmol Gd/kg) of either gadoterate or gadodiamide were administered concurrently by the intravenous route to healthy adult and juvenile rats. Saline was administered to juvenile rats forming the control group. In juvenile rats, the doses were administered from postnatal day 12, that is, once the blood-brain barrier is functional as in humans after birth. The tests were conducted on 5 juvenile rats per sex and per group and on 3 adult animals per sex and per group. T1- weighted magnetic resonance imaging of the cerebellum was performed at 4.7 T during both the treatment and treatment-free periods. Behavioral tests were performed in juvenile rats. Rats were euthanatized at 11 to 12 weeks (ie, approximately 3 months) after the last INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 2
Publications de l’équipe UMR3244 – Dynamique de l’information génétique administration. Total Gd concentrations were measured in plasma, skin, bone, and brain by inductively coupled plasma mass spectrometry. Cerebellum samples from the juvenile rats were characterized by histopathological examination (including immunohistochemistry for glial fibrillary acidic protein or GFAP, and CD68). Lipofuscin pigments were also studied by fluorescence microscopy. All tests were performed blindly on randomized animals. Results Transient skin lesions were observed in juvenile rats (5/5 females and 2/4 males) and not in adult rats having received gadodiamide. Persisting (up to completion of the study) T1 hyperintensity in the deep cerebellar nuclei (DCNs) was observed only in gadodiamide- treated rats. Quantitatively, a slightly higher progressive increase in the DCN/brain stem ratio was observed in adult rats compared with juvenile rats, whereas no difference was noted visually. In all tissues, total Gd concentrations were higher (10- to 30-fold higher) in the gadodiamide-treated groups than in the gadoterate groups. No age-related differences were observed except in bone marrow where total Gd concentrations in gadodiamide-treated juvenile rats were higher than those measured in adults and similar to those measured in cortical bone tissue. No significant treatment-related effects were observed in histopathological findings or in development, behavior, and biochemistry parameters. However, in the elevated plus maze test, a trend toward an anxiogenic effect was observed in the gadodiamide group compared with other groups (nonsignificant). Moreover, in the balance beam test, a high number of trials were excluded in the gadodiamide group because rats (mainly males) did not completely cross the beam, which may also reflect an anxiogenic effect. Conclusions No T1 hyperintensity was observed in the DCN after administration of the macrocyclic GBCA gadoterate regardless of age as opposed to administration of the linear GBCA gadodiamide. Repeated administration of gadodiamide in neonatal and juvenile rats resulted in similar total Gd retention in the skin, brain, and bone to that in adult rats with sex having no effect, whereas Gd distribution in bone marrow was influenced by age. Further studies are required to assess the form of the retained Gd and to investigate the potential risks associated with Gd retention in bone marrow in juvenile animals treated with gadodiamide. Regardless of age, total Gd concentration in the brain and bone was 10- to 30-fold higher after administration of gadodiamide compared with gadoterate. Larissa Mourao, Guillaume Jacquemin, Mathilde Huyghe, Wojciech J Nawrocki, Naoual Menssouri, Nicolas Servant, Silvia Fre (2019 Jan 31) Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells. Scientific reports : 888 : DOI : 10.1038/s41598-018-37301-3 Résumé INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 3
Publications de l’équipe UMR3244 – Dynamique de l’information génétique Colon tumours are hierarchically organized and contain multipotent self-renewing cells, called Cancer Stem Cells (CSCs). We have previously shown that the Notch1 receptor is expressed in Intestinal Stem Cells (ISCs); given the critical role played by Notch signalling in promoting intestinal tumourigenesis, we explored Notch1 expression in tumours. Combining lineage tracing in two tumour models with transcriptomic analyses, we found that Notch1+ tumour cells are undifferentiated, proliferative and capable of indefinite self-renewal and of generating a heterogeneous clonal progeny. Molecularly, the transcriptional signature of Notch1+ tumour cells highly correlates with ISCs, suggestive of their origin from normal crypt cells. Surprisingly, Notch1+ expression labels a subset of CSCs that shows reduced levels of Lgr5, a reported CSCs marker. The existence of distinct stem cell populations within intestinal tumours highlights the necessity of better understanding their hierarchy and behaviour, to identify the correct cellular targets for therapy. Chia-Hsiang Chang, Marco Zanini, Hamasseh Shirvani, Jia-Shing Cheng, Hua Yu, Chih-Hsin Feng, Audrey L Mercier, Shiue-Yu Hung, Antoine Forget, Chun-Hung Wang, Sara Maria Cigna, I-Ling Lu, Wei-Yi Chen, Sophie Leboucher, Won-Jing Wang, Martial Ruat, Nathalie Spassky, Jin-Wu Tsai, Olivier Ayrault (2019 Jan 30) Atoh1 Controls Primary Cilia Formation to Allow for SHH-Triggered Granule Neuron Progenitor Proliferation. Developmental cell : 184-199.e5 : DOI : S1534-5807(18)31085-2 Résumé During cerebellar development, granule neuron progenitors (GNPs) proliferate by transducing Sonic Hedgehog (SHH) signaling via the primary cilium. Precise regulation of ciliogenesis, thus, ensures proper GNP pool expansion. Here, we report that Atoh1, a transcription factor required for GNPs formation, controls the presence of primary cilia, maintaining GNPs responsiveness to SHH. Loss of primary cilia abolishes the ability of Atoh1 to keep GNPs in a proliferative state. Mechanistically, Atoh1 promotes ciliogenesis by transcriptionally regulating Cep131, which facilitates centriolar satellite (CS) clustering to the basal body. Importantly, ectopic expression of Cep131 counteracts the effects of Atoh1 loss in GNPs by restoring proper localization of CS and ciliogenesis. This Atoh1-CS-primary cilium-SHH pro-proliferative pathway is also conserved in SHH-type medulloblastoma, a pediatric brain tumor arising from the GNPs. Together, our data reveal how Atoh1 modulates the primary cilium to regulate GNPs development. Maria Duda, Natalie J Kirkland, Nargess Khalilgharibi, Melda Tozluoglu, Alice C Yuen, Nicolas Carpi, Anna Bove, Matthieu Piel, Guillaume Charras, Buzz Baum, Yanlan Mao (2019 Jan 30) Polarization of Myosin II Refines Tissue Material Properties to Buffer Mechanical Stress. Developmental cell : 245-260.e7 : DOI : S1534-5807(18)31088-8 Résumé As tissues develop, they are subjected to a variety of mechanical forces. Some of these INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 4
Publications de l’équipe UMR3244 – Dynamique de l’information génétique forces are instrumental in the development of tissues, while others can result in tissue damage. Despite our extensive understanding of force-guided morphogenesis, we have only a limited understanding of how tissues prevent further morphogenesis once the shape is determined after development. Here, through the development of a tissue-stretching device, we uncover a mechanosensitive pathway that regulates tissue responses to mechanical stress through the polarization of actomyosin across the tissue. We show that stretch induces the formation of linear multicellular actomyosin cables, which depend on Diaphanous for their nucleation. These stiffen the epithelium, limiting further changes in shape, and prevent fractures from propagating across the tissue. Overall, this mechanism of force-induced changes in tissue mechanical properties provides a general model of force buffering that serves to preserve the shape of tissues under conditions of mechanical stress. Delphine Naud-Martin, Corinne Landras-Guetta, Daniela Verga, Deepanjan Ghosh, Sylvain Achelle, Florence Mahuteau-Betzer, Sophie Bombard, Marie-Paule Teulade-Fichou (2019 Jan 26) Selectivity of Terpyridine Platinum Anticancer Drugs for G-quadruplex DNA. Molecules (Basel, Switzerland) : 24 : 404 : DOI : 10.3390/molecules24030404 Résumé Guanine-rich DNA can form four-stranded structures called G-quadruplexes (G4s) that can regulate many biological processes. Metal complexes have shown high affinity and selectivity toward the quadruplex structure. Here, we report the comparison of a panel of platinum (II) complexes for quadruplex DNA selective recognition by exploring the aromatic core around terpyridine derivatives. Their affinity and selectivity towards G4 structures of various topologies have been evaluated by FRET-melting (Fluorescence Resonance Energy Transfert-melting) and Fluorescent Intercalator Displacement (FID) assays, the latter performed by using three different fluorescent probes (Thiazole Orange (TO), TO-PRO-3, and PhenDV). Their ability to bind covalently to the c-myc G4 structure in vitro and their cytotoxicity potential in two ovarian cancerous cell lines were established. Our results show that the aromatic surface of the metallic ligands governs, in vitro, their affinity, their selectivity for the G4 over the duplex structures, and platination efficiency. However, the structural modifications do not allow significant discrimination among the different G4 topologies. Moreover, all compounds were tested on ovarian cancer cell lines and normal cell lines and were all able to overcome cisplatin resistance highlighting their interest as new anticancer drugs. Pietro Mancuso, Rossella Tricarico, Vikram Bhattacharjee, Laura Cosentino, Yuwaraj Kadariya, Jaroslav Jelinek, Emmanuelle Nicolas, Margret Einarson, Neil Beeharry, Karthik Devarajan, Richard A Katz, Dorjbal G Dorjsuren, Hongmao Sun, Anton Simeonov, Antonio Giordano, Joseph R Testa, Guillaume Davidson, Irwin Davidson, Lionel Larue, Robert W Sobol, Timothy J Yen, Alfonso Bellacosa (2019 Jan 25) Thymine DNA glycosylase as a novel target for melanoma. Oncogene : DOI : 10.1038/s41388-018-0640-2 INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 5
Publications de l’équipe UMR3244 – Dynamique de l’information génétique Résumé Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme thymine DNA glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Here we show that TDG knockdown in melanoma cell lines causes cell cycle arrest, senescence, and death by mitotic alterations; alters the transcriptome and methylome; and impairs xenograft tumor formation. Importantly, untransformed melanocytes are minimally affected by TDG knockdown, and adult mice with conditional knockout of Tdg are viable. Candidate TDG inhibitors, identified through a high-throughput fluorescence-based screen, reduced viability and clonogenic capacity of melanoma cell lines and increased cellular levels of 5-carboxylcytosine, the last intermediate in DNA demethylation, indicating successful on-target activity. These findings suggest that TDG may provide critical functions specific to cancer cells that make it a highly suitable anti-melanoma drug target. By potentially disrupting both DNA repair and the epigenetic state, targeting TDG may represent a completely new approach to melanoma therapy. CAMPAGNE Antoine, LEE Ming-Kang, ZIELINSKI Dina, MICHAUD Audrey, LE CORRE Stéphanie, DINGLI Florent, CHEN Hong, SHAHIDIAN Lara Z, SERVANT Nicolas, LOEW Damarys, PASMANT Eric, PISTEL-VINAY Sophie, WASSEF Michel, MARGUERON Raphaël (2019 Jan 21) BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation Nature Communications : DOI : 10.1038/s41467-018-08255-x Résumé In Drosophila, a complex consisting of Calypso and ASX catalyzes H2A deubiquitination and has been reported to act as part of the Polycomb machinery in transcriptional silencing. The mammalian homologs of these proteins (BAP1 and ASXL1/2/3, respectively), are frequently mutated in various cancer types, yet their precise functions remain unclear. Using an integrative approach based on isogenic cell lines generated with CRISPR/Cas9, we uncover an unanticipated role for BAP1 in gene activation. This function requires the assembly of an enzymatically active BAP1-associated core complex (BAP1.com) containing one of the redundant ASXL proteins. We investigate the mechanism underlying BAP1.com-mediated transcriptional regulation and show that it does not participate in Polycomb-mediated silencing. Instead, our results establish that the function of BAP1.com is to safeguard transcriptionally active genes against silencing by the Polycomb Repressive Complex 1. M Schmidt-Cernohorska, I Zhernov, E Steib, M Le Guennec, R Achek, S Borgers, D Demurtas, L INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 6
Publications de l’équipe UMR3244 – Dynamique de l’information génétique Mouawad, Z Lansky, V Hamel, P Guichard (2019 Jan 19) Flagellar microtubule doublet assembly in vitro reveals a regulatory role of tubulin C-terminal tails. Science (New York, N.Y.) : 363 : 285-288 : DOI : 10.1126/science.aav2567 Résumé Microtubule doublets (MTDs), consisting of an incomplete B-microtubule at the surface of a complete A-microtubule, provide a structural scaffold mediating intraflagellar transport and ciliary beating. Despite the fundamental role of MTDs, the molecular mechanism governing their formation is unknown. We used a cell-free assay to demonstrate a crucial inhibitory role of the carboxyl-terminal (C-terminal) tail of tubulin in MTD assembly. Removal of the C- terminal tail of an assembled A-microtubule allowed for the nucleation of a B-microtubule on its surface. C-terminal tails of only one A-microtubule protofilament inhibited this side-to- surface tubulin interaction, which would be overcome in vivo with binding protein partners. The dynamics of B-microtubule nucleation and its distinctive isotropic elongation was elucidated by using live imaging. Thus, inherent interaction properties of tubulin provide a structural basis driving flagellar MTD assembly. Pamela Caudana, Nicolas Gonzalo Núñez, Philippe De La Rochere, Anaïs Pinto, Jordan Denizeau, Ruby Alonso, Leticia Laura Niborski, Olivier Lantz, Christine Sedlik, Eliane Piaggio (2019 Jan 18) IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation. Cancer immunology research : 443-457 : DOI : 10.1158/2326-6066.CIR-18-0697 Résumé High-dose IL2 immunotherapy can induce long-lasting cancer regression but is toxic and insufficiently efficacious. Improvements are obtained with IL2/anti-IL2 complexes (IL2Cx), which redirect IL2 action to CD8 T and natural killer (NK) cells. Here, we evaluated the efficacy of combining IL2Cx with blockade of inhibitory immune pathways. In an autochthonous lung adenocarcinoma model, we show that the IL2Cx/anti-PD-1 combination increases CD8 T-cell infiltration of the lung and controls tumor growth. In the B16-OVA model, which is resistant to checkpoint inhibition, combination of IL2Cx with PD-1 or CTLA-4 pathway blockade reverses that resistance. Both combinations work by reinvigorating exhausted intratumoral CD8 T cells and by increasing the breadth of tumor-specific T-cell responses. However, only the IL2Cx/anti-CTLA-4 combination is able to rescue NK cell antitumor function by modulating intratumoral regulatory T cells. Overall, association of IL2Cx with PD-1 or CTLA-4 pathway blockade acts by different cellular mechanisms, paving the way for the rational design of combinatorial antitumor therapies. Viviana Barra, Glennis A Logsdon, Andrea Scelfo, Sebastian Hoffmann, Solène Hervé, Aaron Aslanian, Yael Nechemia-Arbely, Don W Cleveland, Ben E Black, Daniele Fachinetti (2019 Jan 13) INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 7
Publications de l’équipe UMR3244 – Dynamique de l’information génétique Phosphorylation of CENP-A on serine 7 does not control centromere function. Nature communications : 175 : DOI : 10.1038/s41467-018-08073-1 Résumé CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function. Hannah L Klein, Giedrė Bačinskaja, Jun Che, Anais Cheblal, Rajula Elango, Anastasiya Epshtein, Devon M Fitzgerald, Belén Gómez-González, Sharik R Khan, Sandeep Kumar, Bryan A Leland, Léa Marie, Qian Mei, Judith Miné-Hattab, Alicja Piotrowska, Erica J Polleys, Christopher D Putnam, Elina A Radchenko, Anissia Ait Saada, Cynthia J Sakofsky, Eun Yong Shim, Mathew Stracy, Jun Xia, Zhenxin Yan, Yi Yin, Andrés Aguilera, Juan Lucas Argueso, Catherine H Freudenreich, Susan M Gasser, Dmitry A Gordenin, James E Haber, Grzegorz Ira, Sue Jinks-Robertson, Megan C King, Richard D Kolodner, Andrei Kuzminov, Sarah Ae Lambert, Sang Eun Lee, Kyle M Miller, Sergei M Mirkin, Thomas D Petes, Susan M Rosenberg, Rodney Rothstein, Lorraine S Symington, Pawel Zawadzki, Nayun Kim, Michael Lisby, Anna Malkova (2019 Jan 7) Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial cell (Graz, Austria) : 1-64 : DOI : 10.15698/mic2019.01.664 Résumé Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies. G Gentric, Y Kieffer, V Mieulet, O Goundiam, C Bonneau, F Nemati, I Hurbain, G Raposo, T Popova, MH Stern, V Lallemand-Breitenbach, S Müller, T Cañeque, R Rodriguez, A Vincent- Salomon, H de Thé, R Rossignol, F Mechta-Grigoriou (2019 Jan 5) INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 8
Publications de l’équipe UMR3244 – Dynamique de l’information génétique PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers Cell Metabolism Résumé High-grade serous ovarian cancer (HGSOC) remains an unmet medical challenge. Here, we unravel an unanticipated metabolic heterogeneity in HGSOC. By combining proteomic, metabolomic, and bioergenetic analyses, we identify two molecular subgroups, low- and high-OXPHOS. While low-OXPHOS exhibit a glycolytic metabolism, high-OXPHOS HGSOCs rely on oxidative phosphorylation, supported by glutamine and fatty acid oxidation, and show chronic oxidative stress. We identify an important role for the PML-PGC-1α axis in the metabolic features of high-OXPHOS HGSOC. In high-OXPHOS tumors, chronic oxidative stress promotes aggregation of PML-nuclear bodies, resulting in activation of the transcriptional co- activator PGC-1α. Active PGC-1α increases synthesis of electron transport chain complexes, thereby promoting mitochondrial respiration. Importantly, high-OXPHOS HGSOCs exhibit increased response to conventional chemotherapies, in which increased oxidative stress, PML, and potentially ferroptosis play key functions. Collectively, our data establish a stress- mediated PML-PGC-1α-dependent mechanism that promotes OXPHOS metabolism and chemosensitivity in ovarian cancer. Mathilde Mathieu, Lorena Martin-Jaular, Grégory Lavieu, Clotilde Théry (2019 Jan 4) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature cell biology : 9-17 : DOI : 10.1038/s41556-018-0250-9 Résumé The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication. INSTITUT CURIE, 20 rue d’Ulm, 75248 Paris Cedex 05, France | 9
You can also read