Plant registrations - Spring 2021
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Plant registrations – Spring 2021 Bertioli, D. J., Gao, D., Ballen‐Taborda, C., Chu, Y., Ozias‐ Akins, P., Jackson, S. A., . . . Leal‐Bertioli, S. C. M. (2021). Registration of GA‐BatSten1 and GA‐MagSten1, two induced allotetraploids derived from peanut wild relatives with superior resistance to leaf spots, rust, and root‐knot nematode. Journal of Plant Registrations, 15(2), 372-378. Branch, W. D. (2021). Registration of ‘Georgia‐20VHO’ Peanut. Journal of Plant Registrations, 15(2), 290-293. Branch, W. D. (2021). Registration of ‘Georgia‐Val/HO’ peanut. Journal of Plant Registrations, 15(2), 285-289. Tillman, B. L. (2021). Registration of ‘FloRun ‘331’ ‘ peanut. Journal of Plant Registrations, 15(2), 294-299. Journal Articles – Spring 2021 Reports from University of Tabriz Advance Knowledge in Agronomy [Comparison of Different Image Processing Methods for Segregation of Peanut (* * Arachis hypogaea* * L.) Seeds Infected by Aflatoxin-Producing Fungi]. (2021, 05/18/). p. 4519. Abadya, S., Shimelis, H., Pasupuleti, J., Mashilo, J., Chaudhari, S., & Manohar, S. S. (2021). Assessment of the
genetic diversity of groundnut (Arachis hypogaea L.) genotypes for kernel yield, oil and fodder quantity and quality under drought conditions. Crop Science, 61(3), 1926-1943. AkÇUra, S., TaŞ, İ., KÖKten, K., Kaplan, M., & BengÜ, A. Ş. (2021). Effects of irrigation intervals and irrigation levels on oil content and fatty acid composition of peanut cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 1-18. doi:10.15835/nbha49212224 Ali, A. A. M., Moamen, M. A. E.-E., Mostafa, M. R., Fahmy, A. S. H., Esmat, F. A., & Ahmed, S. (2021). Impact of Level of Nitrogen Fertilization and Critical Period for Weed Control in Peanut (Arachis hypogaea L.). Agronomy, 11(909), 909-909. doi:10.3390/agronomy11050909 Ali, M. A., Pal, A. K., Baidya, A., & Gunri, S. K. (2021). Variation in Dry Matter Production, Partitioning, Yield and its Correlation in Groundnut (Arachis Hypogaea L.) Genotypes. Legume Research: An International Journal, 44(6), 706-711. doi:10.18805/LR-4144 Altaf, K., Younis, A., Ramzan, Y., & Ramzan, F. (2021). Effect of composition of agricultural wastes and biochar as a growing media on the growth of potted Stock (Matthiola incana) and Geranium (Pelargonium spp). Journal of Plant Nutrition, 44(7), 919-930. doi:10.1080/01904167.2020.1862205 Ângelo, F. L., & Vanzolini, S. S. (2021). PRODUTIVIDADE DO AMENDOIM EM FUNÇÃO DA APLICAÇÃO DE DOSES DE GESSO AGRÍCOLA NO INÍCIO DO FLORESCIMENTO. PEANUT YIELD AS A RESULT OF THE APPLICATION OF AGRICULTURAL GYPSUM DOSES AT FIRST FLOWERING., 18(1), 181-194. doi:10.3738/1982.2278.3825 Attia, Z., Pogoda, C. S., Reinert, S., Kane, N. C., & Hulke, B. S. (2021). Breeding for sustainable oilseed crop yield and quality in a changing climate. Theoretical & Applied Genetics, 134(6), 1817-1827.
Ballén‐Taborda, C., Chu, Y., Ozias‐Akins, P., Timper, P., Jackson, S. A., Bertioli, D. J., & Leal‐Bertioli, S. C. M. (2021). Validation of resistance to root‐knot nematode incorporated in peanut from the wild relative Arachis stenosperma. Agronomy Journal, 113(3), 2293-2302. Beesanakoppa, S. B., Saini, K. S., & Singh, T. (2021). EFFECT OF SEED PRIMING ON THE GROWTH, YIELD AND ECONOMICS OF SPRING GROUNDNUT (Arachis hypogaea L.) UNDER DIFFERENT PLANTING GEOMETRIES. Agricultural Research Journal, 58(2), 195-199. Bruton, K., Spill, P., Vohra, S., Baribeau, O., Manzoor, S., Gadkar, S., . . . Jordana, M. (2021). Interrupting reactivation of immunologic memory diverts the allergic response and prevents anaphylaxis. The Journal of Allergy and Clinical Immunology, 147(4), 1381-1392. doi:10.1016/j.jaci.2020.11.042 Camiletti, B. X., Paredes, J. A., Monguillot, J. H., Grosso, N. R., & Rago, A. M. (2021). Fungicide efficacy of nanocrystal-based formulations against peanut smut. Crop Protection, 143. doi:10.1016/j.cropro.2020.105522 Cao, M., Long, C., Sun, S., Zhao, Y., Luo, J., & Wu, D. (2021). Catalytic hydrothermal liquefaction of peanut shell for the production aromatic rich monomer compounds. Journal of the Energy Institute, 96, 90-96. doi:10.1016/j.joei.2021.02.007 Chen, H., Liu, N., Xu, R., Chen, X., Zhang, Y., Hu, R., . . . Lin, G. (2021). Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Plant biology (Stuttgart, Germany), 23(3), 517-527. doi:10.1111/plb.13238 Chen, H., Liu, N., Xu, R., Chen, X., Zhang, Y., Hu, R., . . . Kranner, I. (2021). Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Plant Biology, 23(3), 517-527.
doi:10.1111/plb.13238 Chen, K., Wang, L., Chen, H., Zhang, C., Wang, S., Chu, P., . . . Zhuang, W. (2021). Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P.362200. BMC Microbiology, 21(1), 1-15. doi:10.1186/s12866-021-02157-7 Cristiano Vieira dos, S., Ana Elisa Bressan Smith, L., Mario Mollo, N., Leonardo Alexandre, L., & Paulo Sérgio Barbosa dos, S. (2021). Study of the biogas potential generated from residue: peanut shells. Revista Brasileira de Ciências Ambientais, 56(2), 318-326. doi:10.5327/Z21769478765 Davis, B. I., Agraz, C. B., Kline, M., Gottschall, E., Nolt, M., Whitaker, T. B., . . . Davis, J. P. (2021). Measurements of High Oleic Purity in Peanut Lots Using Rapid, Single Kernel Near‐Infrared Reflectance Spectroscopy. Journal of the American Oil Chemists’ Society (JAOCS), 98(6), 621-632. doi:10.1002/aocs.12487 de Souza Junior, J. P., Frazão, J. J., de Morais, T. C. B., Espoti, C. D., dos Santos Sarah, M. M., & de Mello Prado, R. (2021). Foliar Spraying of Silicon Associated with Salicylic Acid Increases Silicon Absorption and Peanut Growth. SILICON (1876990X), 13(4), 1269-1275. Dobreva, I. D., Ruiz-Guzman, H. A., Barrios-Perez, I., Adams, T., Teare, B. L., Payton, P., . . . Colaço, A. (2021). Thresholding Analysis and Feature Extraction from 3D Ground Penetrating Radar Data for Noninvasive Assessment of Peanut Yield. Remote Sensing, 13(10), 1896-1896. doi:10.3390/rs13101896 Dong, X., & Astill, G. M. (2021). The Short- and Long-Term Costs of a Severe Drought on Retail Peanut Butter Prices and Consumers. Journal of Agricultural & Applied Economics (Cambridge University Press), 53(2), 259-279. Duff, J. (2021). American sorghum needs infrastructure to get
to global customers. Southwest Farm Press, 48(8), 18-19. Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770. doi:10.1016/j.scitotenv.2020.144449 Florentino Canjá, J., da Silva Sales, J. R., Luzia Pinho, L., Gomes Sousa, N. I., Feitosa de Lacerda, C., & Gomes de Sousa, G. (2021). Production and water use efficiency of peanut under salt stress and soil cover. Produção e uso eficiente da água do amendoinzeiro sob estresse salino e cobertura do solo., 52(2), 1-8. doi:10.5935/1806-6690.20210040 Ghulam, K., Maryam, K., Faiza, M., Alvina, G., Tariq, S., Adil, H., . . . Rabia, A. (2021). Expression Characterization of Flavonoid Biosynthetic Pathway Genes and Transcription Factors in Peanut Under Water Deficit Conditions. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.680368 Ghulam, K., Maryam, K., Sidra, H., Tooba, I., Jan, M., Hina, A., . . . Rabia, A. (2021). Molecular characterization of Leucoanthocyanidin reductase and Flavonol synthase gene in Arachis hypogaea. Saudi Journal of Biological Sciences, 28(4), 2301-2315. doi:10.1016/j.sjbs.2021.01.024 H, M., A.M, M., J, K.-P., & Mtimuni, B. (2021). INFLUENCE OF GENDERED ROLES ON LEGUME UTILIZATION AND IMPROVED CHILD DIETARY INTAKE IN MALAWI. African Journal of Food, Agriculture, Nutrition and Development, 21(3), 17764. Hajjarpoor, A., Kholová, J., Pasupuleti, J., Soltani, A., Burridge, J., Degala, S. B., . . . Vadez, V. (2021). Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Research, 267, N.PAG-N.PAG. doi:10.1016/j.fcr.2021.108160
He, M., Sun, W., Cui, S., Mu, G., Liu, L., & Guo, W. (2021). Analysis of Microbial Diversity and Community Structure of Peanut Pod and Its Surrounding Soil in Peanut Rot Epidemic Area. Current Microbiology, 78(6), 2173-2182. doi:10.1007/s00284-021-02471-3 He, S., Chen, Y., Xiang, W., Chen, X., Wang, X., & Chen, Y. (2021). Carbon and nitrogen footprints accounting of peanut and peanut oil production in China. Journal of Cleaner Production, 291. doi:10.1016/j.jclepro.2021.125964 Hu, M., Li, J., Hou, M., Liu, X., Cui, S., Yang, X., . . . Mu, G. (2021). Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Scientific Reports, 11(1), 1-14. doi:10.1038/s41598-021-90141-6 Hu, M., Li, J., Hou, M., Liu, X., Cui, S., Yang, X., . . . Mu, G. (2021). Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Scientific Reports, 11(1), 10721. doi:10.1038/s41598-021-90141-6 Ibrahim, E. S., Mostafa, M. A. H., & Mahfouz, M. M. A.-E. (2021). Effects of Inorganic Fertilizers on Virulence of the Entomopathogenic Nematode Steinernema glaseri and Peanut Germination under Field Conditions. Agronomy, 11(945), 945-945. doi:10.3390/agronomy11050945 Ijaz, M., Nawaz, A., Ul-Allah, S., Sher, A., Sattar, A., Sarwar, M., . . . Hessini, K. (2021). Optimizing sowing date for peanut genotypes in arid and semi-arid subtropical regions. PLoS ONE, 16(6), 1-10. doi:10.1371/journal.pone.0252393 Iliyana, D. D., Henry, A. R.-G., Ilse, B.-P., Tyler, A., Brody, L. T., Paxton, P., . . . Dirk, B. H. (2021).
Thresholding Analysis and Feature Extraction from 3D Ground Penetrating Radar Data for Noninvasive Assessment of Peanut Yield. Remote Sensing, 13(1896), 1896-1896. doi:10.3390/rs13101896 Jia, C., Lu, X., Gao, J., Wang, R., Sun, Q., & Huang, J. (2021). TMT‐labeled quantitative proteomic analysis to identify proteins associated with the stability of peanut milk. Journal of the Science of Food & Agriculture, 1. doi:10.1002/jsfa.11313 Juliano, F. F., Massarioli, A. P., Lamuela-Raventos, R. M., de Alvarenga, J. F. R., de Lima, L. M., dos Santos, R. C., . . . de Alencar, S. M. (2021). Do drought-adapted peanut genotypes have different bioactive compounds and ROS-scavenging activity? European Food Research & Technology, 247(6), 1369-1378. doi:10.1007/s00217-021-03714-0 Kamal, K. P., Rinku, D., Dharmesh, N. S., Devidayal, Shamsudheen, M., Arvind, K., . . . Radhakrishnan, T. (2021). Alleviation of Salinity Stress in Peanut by Application of Endophytic Bacteria. Frontiers in Microbiology, 12. doi:10.3389/fmicb.2021.650771 Kemerait, B. (2021). Time to deal with aflatoxin in peanuts, and this is why. Corn & Soybean Digest Exclusive Insight, N.PAG-N.PAG. Kostandini, G., Tanellari, E., & Gaskell, J. (2021). THE EFFECT OF LAND TENURE AND EROSION MEASURES ON PRODUCTIVITY AND INVESTMENTS: PLOT AND HOUSEHOLD LEVEL EVIDENCE FROM MALI. Journal of Developing Areas, 55(2), 365-385. doi:10.1353/jda.2021.0025 Kubra, G., Khan, M., Hussain, S., Iqbal, T., Muhammad, J., Ali, H., . . . Amir, R. (2021). Molecular characterization of Leucoanthocyanidin reductase and Flavonol synthase gene in Arachis hypogaea. Saudi Journal of Biological Sciences, 28(4), 2301-2315. doi:10.1016/j.sjbs.2021.01.024
Kubra, G., Khan, M., Munir, F., Gul, A., Shah, T., Hussain, A., . . . Amir, R. (2021). Expression Characterization of Flavonoid Biosynthetic Pathway Genes and Transcription Factors in Peanut Under Water Deficit Conditions. Frontiers in Plant Science, 12, 1-18. Kubra, G., Khan, M., Munir, F., Gul, A., Shah, T., Hussain, A., . . . Amir, R. (2021). Expression Characterization of Flavonoid Biosynthetic Pathway Genes and Transcription Factors in Peanut Under Water Deficit Conditions. Frontiers in Plant Science, 12, 680368. doi:10.3389/fpls.2021.680368 Lamon, S., Chu, Y., Guimaraes, L. A., Bertioli, D. J., Leal‐ Bertioli, S. C. M., Santos, J. F., . . . Ozias‐Akins, P. (2021). Characterization of peanut lines with interspecific introgressions conferring late leaf spot resistance. Crop Science, 61(3), 1724-1738. Le, T. V., Ngo, C. N. T., & Hiroyuki, F. (2021). Effect of fly ash amendment on sandy soil properties and peanut yields. ScienceAsia, 47(3), 357-365. Lee, Y., Cui, M., Son, Y., Ma, J., Han, Z., & Khim, J. (2021). Evaluation of stabilizing material and stabilization efficiency through comparative study of toxic heavy metal transfer between corn and peanut grown in stabilized field soil. Environmental Pollution, 275, N.PAG-N.PAG. Li, J., li, M., & Jin, Z. (2021). Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Colloid And Interface Science, 592, 237-248. doi:10.1016/j.jcis.2021.02.053 Li, R., Zhao, Z., Monfort, W. S., Johnsen, K., Tse, Z. T. H., & Leo, D. J. (2021). Development of a smartphone-based peanut data logging system. Precision Agriculture, 22(3), 1006-1018. doi:10.1007/s11119-020-09758-8
Li, Z., Zhang, X., Zhao, K., Zhao, K., Qu, C., Gao, G., . . . Yin, D. (2021). Comprehensive Transcriptome Analyses Reveal Candidate Genes for Variation in Seed Size/Weight During Peanut (Arachis hypogaea L.) Domestication. Frontiers in Plant Science, 12, N.PAG-N.PAG. Li, Z., Zhang, X., Zhao, K., Zhao, K., Qu, C., Gao, G., . . . Yin, D. (2021). Comprehensive Transcriptome Analyses Reveal Candidate Genes for Variation in Seed Size/Weight During Peanut ( Arachis hypogaea L.) Domestication. Frontiers in Plant Science, 12, 666483. doi:10.3389/fpls.2021.666483 Liying, Y., Wanduo, S., Yuning, C., Yanping, K., Yong, L., Dongxin, H., . . . Boshou, L. (2021). Effect of non- aflatoxigenic strains of Aspergillus flavus on aflatoxin contamination of pre-harvest peanuts in fields in China. Oil Crop Science, 6(2), 81-86. doi:10.1016/j.ocsci.2021.04.004 Liying, Y., Zhihui, W., Wanduo, S., Pengmin, F., Yanping, K., Yong, L., . . . Boshou, L. (2021). Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. BMC Genomics, 22(1), 1-15. doi:10.1186/s12864-021-07534-0 Lu, Y., Ding, H., Jiang, X., Zhang, H., Ma, A., Hu, Y., & Li, Z. (2021). Effects of the extract from peanut meal fermented with Bacillus natto and Monascus on lipid metabolism and intestinal barrier function of hyperlipidemic mice. Journal of the Science of Food & Agriculture, 101(6), 2561-2569. doi:10.1002/jsfa.10884 Lucero, C. T., Lorda, G. S., Anzuay, M. S., Ludueña, L. M., & Taurian, T. (2021). Peanut Endophytic Phosphate Solubilizing Bacteria Increase Growth and P Content of Soybean and Maize Plants. Current Microbiology, 78(5), 1961-1972. doi:10.1007/s00284-021-02469-x Maren, K., Peter, C., Frank, B.-P., Martin, G., Andrea, W., Thomas, H., . . . Masako, T. (2021). Human monocyte-derived
type 1 and 2 macrophages recognize Ara h 1, a major peanut allergen, by different mechanisms. Scientific Reports, 11(1), 1-13. doi:10.1038/s41598-021-89402-1 Mekdad, A. A. A., El-Enin, M. M. A., Rady, M. M., Hassan, F. A. S., Ali, E. F., Shaaban, A., . . . Horvath, D. P. (2021). Impact of Level of Nitrogen Fertilization and Critical Period for Weed Control in Peanut (Arachis hypogaea L.). Agronomy, 11(5), 909. Melesse, M. B., Tirra, A. N., Ojiewo, C. O., Hauser, M., & Mancinelli, R. (2021). Understanding Farmers’ Trait Preferences for Dual-Purpose Crops to Improve Mixed Crop–Livestock Systems in Zimbabwe. Sustainability (2071-1050), 13(10), 5678-5678. doi:10.3390/su13105678 Mulenga, H., Mwangwela, A. M., Kampanje-Phiri, J., & Mtimuni, B. (2021). INFLUENCE OF GENDERED ROLES ON LEGUME UTILIZATION AND IMPROVED CHILD DIETARY INTAKE IN MALAWI. African Journal of Food, Agriculture, Nutrition & Development, 21(3), 17764-17786. doi:10.18697/ajfand.98.18205 Nannan, Z., Shunli, C., Xiukun, L., Bokuan, L., Hongtao, D., Yingru, L., . . . Lifeng, L. (2021). Transcriptome and Co- expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut (Arachis hypogaea L.). Frontiers in Genetics, 12. doi:10.3389/fgene.2021.672884 Noman, H. M., Rana, D. S., Choudhary, A. K., Dass, A., Rajanna, G. A., & Pande, P. (2021). Improving productivity, quality and biofortification in groundnut (Arachis hypogaea L.) through sulfur and zinc nutrition in alluvial soils of the semi-arid region of India. Journal of Plant Nutrition, 44(8), 1151-1174. doi:10.1080/01904167.2020.1849289 Okada, M. H., Oliveira, G. R. F. d., Sartori, M. M. P., Crusciol, C. A. C., Nakagawa, J., & Amaral da Silva, E. A. (2021). Acquisition of the physiological quality of peanut
(Arachis hypogaea L.) seeds during maturation under the influence of the maternal environment. PLoS ONE, 16(5), 1-15. doi:10.1371/journal.pone.0250293 Okada, M. H., Oliveira, G. R. F. d., Sartori, M. M. P., Crusciol, C. A. C., Nakagawa, J., & Amaral da Silva, E. A. (2021). Acquisition of the physiological quality of peanut (Arachis hypogaea L.) seeds during maturation under the influence of the maternal environment. PLoS ONE, 16(5), e0250293. doi:10.1371/journal.pone.0250293 Pal, K. K., Dey, R., Sherathia, D. N., Devidayal, Mangalassery, S., Kumar, A., . . . Radhakrishnan, T. (2021). Alleviation of Salinity Stress in Peanut by Application of Endophytic Bacteria. Frontiers in Microbiology, 11, N.PAG- N.PAG. Park, Y.-E., Park, C.-H., Yeo, H.-J., Chung, Y.-S., Park, S.- U., Hoisington, D., & Jordan, D. (2021). Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts. Agronomy, 11(5), 975. Parmar, S., Deshmukh, D. B., Kumar, R., Manohar, S. S., Joshi, P., Sharma, V., . . . Pandey, M. K. (2021). Single Seed-Based High-Throughput Genotyping and Rapid Generation Advancement for Accelerated Groundnut Genetics and Breeding Research. Agronomy, 11(6), 1226-1226. doi:10.3390/agronomy11061226 Patel, M., Fatnani, D., & Parida, A. K. (2021). Silicon- induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant physiology and biochemistry : PPB, 166, 290-313. doi:10.1016/j.plaphy.2021.06.003 Pradhan, S., Ananthanarayan, L., Prasad, K., & Bhatnagar- Mathur, P. (2021). Anti-fungal activity of lactic acid bacterial isolates against aflatoxigenic fungi inoculated on peanut kernels. LWT, 143. doi:10.1016/j.lwt.2021.111104
Price, K. J., Li, X., Price, A. J., Browne, F., Balkcom, K., & Chen, C. Y. (2021). Evaluation of peanut tolerance to mid- season applications of PPO-Inhibitor herbicides mixed with different surfactants. Crop Protection (02612194), 143, N.PAG- N.PAG. 182. M, T., M, F., & S, S. (2021). EFFECT OF VARYING SHADE LEVELS ON VEGETATIVE PERFORMANCE AND CHLOROPHYLL CONTENTS OF GROUNDNUT (ARACHIS HYPOGEA L.) SHOOTS. Science World Journal, 16(2), 179-182. Santos-Espinoza, A. M., González-Mendoza, D., Ruiz-Valdiviezo, V. M., Luján-Hidalgo, M. C., Jonapa-Hernández, F., Valdez- Salas, B., & Gutiérrez-Miceli, F. A. (2021). Changes in the physiological and biochemical state of peanut plants (Arachis hypogaea L.) induced by exposure to green metallic nanoparticles. International Journal of Phytoremediation, 23(7), 747-754. doi:10.1080/15226514.2020.1856037 Sarkar, S., Ramsey, A. F., Cazenave, A.-B., & Balota, M. (2021). Peanut Leaf Wilting Estimation From RGB Color Indices and Logistic Models. Frontiers in Plant Science, 12, 1-16. Sarkar, S., Ramsey, A. F., Cazenave, A.-B., & Balota, M. (2021). Peanut Leaf Wilting Estimation From RGB Color Indices and Logistic Models. Frontiers in Plant Science, 12, 658621. doi:10.3389/fpls.2021.658621 Sayantan, S., Ramsey, A. F., Alexandre-Brice, C., & Maria, B. (2021). Peanut Leaf Wilting Estimation From RGB Color Indices and Logistic Models. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.658621 Senakoon, W., Nuchadomrong, S., Jearranaiprepame, P., Senawong, G., Jogloy, S., & Songsri, P. (2021). Aspergillus flavus virulence in pods and seeds of peanut with different drought responsive genotypes related to water status. ScienceAsia, 47(2), 178-186. doi:10.2306/scienceasia1513-1874.2021.026
Shaibu, A. S., Miko, Z. L., Mohammed, S. G., Ajeigbe, H. A., Usman, A., Mohammed, M. S., & Umar, M. L. (2021). Genotype x Environment Interaction for Resistance to Early Leaf Spot of Groundnut Mini Core Collections in the Savannas of Nigeria. Legume Research: An International Journal, 44(4), 472-479. doi:10.18805/LR-579 Shi, X., Zhao, X., Ren, J., Dong, J., Zhang, H., Dong, Q., . . . Yu, H. (2021). Influence of Peanut, Sorghum, and Soil Salinity on Microbial Community Composition in Interspecific Interaction Zone. Frontiers in Microbiology, 12, 1-13. Shujun, W., Junlin, Z., Yujia, W., Qingfeng, Y., Taotao, C., Yinglong, C., . . . Tieliang, W. (2021). Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.650432 Smach, M. A., Zarrouk, A., Hafsa, J., Gaffrej, H., Ben Abdallah, J., Charfeddine, B., & Limem, K. (2021). Maillard Reaction Products and Phenolic Compounds from Roasted Peanut Flour Extracts Prevent Scopolamine-Induced Amnesia Via Cholinergic Modulation and Antioxidative Effects in Mice. Journal of Medicinal Food, 24(6), 645-652. doi:10.1089/jmf.2020.0028 Smith, R. (2021). Planting day offers best peanut yield potential. Corn & Soybean Digest Exclusive Insight, N.PAG- N.PAG. Sowmya, S., & Ganapathy, M. (2021). Influence of different micronutrients on growth and yield of groundnut (Arachis hypogaea) in coastal sandy soils. Research on Crops, 22(2), 251-255. doi:10.31830/2348-7542.2021.065 Strieder, M. M., Landim Neves, M. I., Silva, E. K., & Meireles, M. A. A. (2021). Impact of thermosonication pretreatment on the production of plant protein-based natural blue colorants. Journal of Food Engineering, 299.
doi:10.1016/j.jfoodeng.2021.110512 Sun, X., Xu, Y., Chen, L., Jin, X., & Ni, H. (2021). The salt- tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiological Research, 245. doi:10.1016/j.micres.2020.126673 Traore, S. M., Han, S., Binagwa, P., Xu, W., Chen, X., Liu, F., & He, G. (2021). Genome‐wide identification of mlo genes in the cultivated peanut (Arachis hypogaea L.). Euphytica, 217(4), 1-10. doi:10.1007/s10681-021-02792-1 Traore, S. M., Han, S., Binagwa, P., Xu, W., Chen, X., Liu, F., & He, G. (2021). Genomeâwide identification of mlo genes in the cultivated peanut (Arachis hypogaea L.). Euphytica: International Journal of Plant Breeding, 217(4). doi:10.1007/s10681-021-02792-1 Tsagareishvili, D., Sesikashvili, O., Tavdidishvili, D., Dadunashvili, G. I. A., Sakhanberidze, N., & Tsagareishvili, S. (2021). Mathematical description of the production of extruded products enriched with nut flour. Journal of Food & Nutrition Research, 60(2), 153-160. Wang, J., Yan, C., Shi, D., Zhao, X., Yuan, C., Sun, Q., . . . Shan, S. (2021). The Genetic Base for Peanut Height-Related Traits Revealed by a Meta-Analysis. Plants (2223-7747), 10(6), 1058. Wang, S., Zheng, J., Wang, Y., Yang, Q., Chen, T., Chen, Y., . . . Wang, T. (2021). Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application. Frontiers in Plant Science, 12, 1-14. Wang, S., Zheng, J., Wang, Y., Yang, Q., Chen, T., Chen, Y., . . . Wang, T. (2021). Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application.
Frontiers in Plant Science, 12, 650432. doi:10.3389/fpls.2021.650432 Wang, X., Liu, Y., Huai, D., Chen, Y., Jiang, Y., Ding, Y., . . . Liao, B. (2021). Genome-wide identification of peanut PIF family genes and their potential roles in early pod development. Gene, 781, N.PAG-N.PAG. doi:10.1016/j.gene.2021.145539 Wang, X., Yang, X., Feng, Y., Dang, P., Wang, W., Graze, R., . . . Chen, C. (2021). Transcriptome Profile Reveals Drought- Induced Genes Preferentially Expressed in Response to Water Deficit in Cultivated Peanut (Arachis hypogaea L.). Frontiers in Plant Science, 12, N.PAG-N.PAG. Xi, M., Kai, T., Xinlan, L., Jiehao, Z., Hongliang, H., Cangning, Z., . . . Sheng, H. (2021). SOIL AND WATER LOSS CHARACTERISTICS OF PEANUT IN DIFFERENT GROWTH STAGES ON GENTLE PURPLE SOIL SLOPES. Fresenius Environmental Bulletin, 30(6B), 7833-7841. Xiaolong, S., Xinhua, Z., Jinyao, R., Jiale, D., He, Z., Qiqi, D., . . . Haiqiu, Y. (2021). Influence of Peanut, Sorghum, and Soil Salinity on Microbial Community Composition in Interspecific Interaction Zone. Frontiers in Microbiology, 12. doi:10.3389/fmicb.2021.678250 Xu, W., Xinlei, Y., Yucheng, F., Phat, D., Wenwen, W., Rita, G., . . . Charles, C. (2021). Transcriptome Profile Reveals Drought-Induced Genes Preferentially Expressed in Response to Water Deficit in Cultivated Peanut (Arachis hypogaea L.). Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.645291 Yan, L., Song, W., Chen, Y., Kang, Y., Lei, Y., Huai, D., . . . Liao, B. (2021). Effect of non-aflatoxigenic strains of Aspergillus flavus on aflatoxin contamination of pre-harvest peanuts in fields in China. Oil Crop Science, 6(2), 81-86. doi:10.1016/j.ocsci.2021.04.004
Yan, L., Song, W., Chen, Y., Kang, Y., Lei, Y., Huai, D., . . . Liao, B. (2021). Effect of non-aflatoxigenic strains of Aspergillus flavuson aflatoxin contamination of pre-harvest peanuts in fields in China. Oil Crop Science, 6(2), 81-86. Yan, L., Wang, Z., Song, W., Fan, P., Kang, Y., Lei, Y., . . . Liao, B. (2021). Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. BMC Genomics, 22(1), 1-15. doi:10.1186/s12864-021-07534-0 Yaqian, L., Haoyue, D., Xiaoyang, J., Huiwen, Z., Aiguo, M., Yingfen, H., & Zichao, L. (2021). Effects of the extract from peanut meal fermented with Bacillus natto and Monascus on lipid metabolism and intestinal barrier function of hyperlipidemic mice. JSFA Reports, 101(6), 2561-2569. doi:10.1002/jsfa.10884 Ye-Eun, P., Chang-Ha, P., Hyeon-Ji, Y., Yong-Suk, C., & Sang- Un, P. (2021). Resveratrol Biosynthesis in Hairy Root Cultures of Tan and Purple Seed Coat Peanuts. Agronomy, 11(975), 975-975. doi:10.3390/agronomy11050975 Zhao, C., He, L., Xia, H., Zhou, X., Geng, Y., Hou, L., . . . Wang, X. (2021). De novo full length transcriptome analysis of Arachis glabrata provides insights into gene expression dynamics in response to biotic and abiotic stresses. Genomics, 113(3), 1579-1588. doi:10.1016/j.ygeno.2021.03.030 Zhao, J., Liu, Z., Gao, F., Wang, Y., Lai, H., Pan, X., . . . Li, X. (2021). A 2-year study on the effects of tillage and straw management on the soil quality and peanut yield in a wheat–peanut rotation system. Journal of Soils & Sediments: Protection, Risk Assessment, & Remediation, 21(4), 1698-1712. doi:10.1007/s11368-021-02908-z Zhao, N., Cui, S., Li, X., Liu, B., Deng, H., Liu, Y., . . . Liu, L. (2021). Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in
Response to Severe Drought Stress in Peanut (Arachis hypogaea L.). Frontiers in Genetics, 11, N.PAG-N.PAG. Zhao, N., Cui, S., Li, X., Liu, B., Deng, H., Liu, Y., . . . Liu, L. (2021). Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut ( Arachis hypogaea L.). Frontiers in Genetics, 12, 672884. doi:10.3389/fgene.2021.672884 Zhen, X., Gao, F., Li, X., Liu, Z., Zhao, J., Li, Y., . . . Yang, D. (2021). Responses of hypocotyl growth and seedling emergence with respect to soil sowing depth stress in peanut (Arachis hypogaea L.). Archives of Agronomy & Soil Science, 67(4), 519-535. doi:10.1080/03650340.2020.1737856 Ziyaee, P., Farzand Ahmadi, V., Bazyar, P., Cavallo, E., & Niedbała, G. (2021). Comparison of Different Image Processing Methods for Segregation of Peanut (Arachis hypogaea L.) Seeds Infected by Aflatoxin-Producing Fungi. Agronomy, 11(5), 873. Journal Articles – Winter 2021 Shandong Academy Agricultural Machinery Sciences Submits Patent Application for Ridging Spade for Cultivating and Preparing Combine Seeder of Peanut and Production Method. (2021, 01/25/) Findings from Naresuan University Has Provided New Information about Biotechnology (Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks …).
(2021), 692. Antonio Fabio da Silva, L., Max Ferreira dos, S., Matheus Lima, O., Geocleber Gomes de, S., Paulo Furtado Mendes, F., & Lucas Nunes da, L. (2021). Physiological responses of inoculated and uninoculated peanuts under saline stress. Revista Ambiente & Água, 16(1), 1-10. doi:10.4136/ambi- agua.264 Aryal, P., & Sollenberger, L. E. (2021, 2021). Growth temperature and rhizome propagule characteristics affect rhizoma peanut shoot emergence and biomass partitioning. Aryal, P., & Sollenberger, L. E. (2021). Growth temperature and rhizome propagule characteristics affect rhizoma peanut shoot emergence and biomass partitioning. Agronomy Journal, 113(1), 335-344. Aryal, P., Sollenberger, L. E., Kohmann, M. M., Silva, L. S., Cooley, K. D., & Dubeux, J. C. B., Jr. (2021). Plant growth habit and nitrogen fertilizer effects on rhizoma peanut biomass partitioning during establishment. Grass & Forage Science, 1. doi:10.1111/gfs.12519 Barnard, J. H., Matthews, N., & Preez, C. C. d. (2021). Formulating and assessing best water and salt management practices: lessons from non-saline and water-logged irrigated fields. Agricultural Water Management, 247. doi:10.1016/j.agwat.2020.106706 https://www.sciencedirect.com/science/article/abs/pii/S0378377 420322502 Cai-Xia, Y. A. N., Juan, W., Xiao-Bo, Z., Xiu-Xia, S., Chang- Song, J., Quan-Xi, S. U. N., . . . Shi-Hua, S. (2021). Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage. (English). Acta Agronomica Sinica, 47(3), 556-565. Chen, H., Liu, N., Xu, R., Chen, X., Zhang, Y., Hu, R., . . .
Lin, G. (2021). Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Plant Biology, 1. doi:10.1111/plb.13238 Chuantang, W., Feifei, W., Zhiwei, W., Ying, W., Ning, C., Du, Z., . . . Lijun, W. (2021). Improving chemical and sensory quality of high-oleic peanut by application of foliar fertilizer. Oil Crop Science, 6(1), 50-52. doi:10.1016/j.ocsci.2021.03.00 Chung, I.-M., Lee, C., Hwang, M. H., Kim, S.-H., Chi, H.-Y., Yu, C. Y., . . . Soengas, P. (2021). The Influence of Light Wavelength on Resveratrol Content and Antioxidant Capacity in Arachis hypogaeas L. Agronomy, 11(2), 305. doi:10.3390/agronomy11020305 Ci, D., Tang, Z., Ding, H., Cui, L., Zhang, G., Li, S., . . . Xu, Y. (2021). The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil. Journal of Microbiology, 59(1), 51-63 Culbreath, A., Kemerait, R., Brenneman, T., Cantonwine, E., & Rucker, K. (2021). Effect of In-Furrow Application of Fluopyram on Leaf Spot Diseases of Peanut. Plant disease. doi:10.1094/PDIS-01-21-0052-RE Dang, P. M., Lamb, M. C., & Chen, C. Y. (2021). Association of differentially expressed R-gene candidates with leaf spot resistance in peanut (Arachis hypogaea L.). Molecular Biology Reports, 48(1), 323-334. de Breuil, S., Dottori, C., Bejerman, N., Nome, C., Giolitti, F., & Lenardon, S. (2021). Orthotospovirus disease epidemic: molecular characterization and incidence in peanut crops. Journal of Plant Pathology, 103(1), 305-309. doi:10.1007/s42161-020-00686-0
dos Santos, A. F., Corrêa, L. N., Lacerda, L. N., Tedesco- Oliveira, D., Pilon, C., Vellidis, G., & da Silva, R. P. (2021). High-resolution satellite image to predict peanut maturity variability in commercial fields. Precision Agriculture, 1-15. doi:10.1007/s11119-021-09791-1 Eungsuwan, N., Chayjarung, P., Pankam, J., Pilaisangsuree, V., Wongshaya, P., Kongbangkerd, A., . . . Limmongkon, A. (2021). Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. Journal of Biotechnology, 326, 28-36. doi:10.1016/j.jbiotec.2020.12.00 Eungsuwan, N., Chayjarung, P., Pankam, J., Pilaisangsuree, V., Wongshaya, P., Kongbangkerd, A., . . . Limmongkon, A. (2021). Production and antimicrobial activity of trans-resveratrol, trans-arachidin-1 and trans-arachidin-3 from elicited peanut hairy root cultures in shake flasks compared with bioreactors. Journal of Biotechnology, 326, 28-36. doi:10.1016/j.jbiotec.2020.12.006 Fernandes Cruz, R. I., Ferreira Da Silva, G., Da Silva, M. M., Santos Silva, A. H., Amilton Santos JÚNior, J., & Farias De FranÇA E. Silva, Ê. (2021). PRODUCTIVITY OF IRRIGATED PEANUT PLANTS UNDER PULSE AND CONTINUOUS DRIPPING IRRIGATION WITH BRACKISH WATER. PRODUÇÃO DE AMENDOIM IRRIGADO COM ÁGUAS SALOBRAS VIA GOTEJAMENTO PULSADO E CONTÍNUO., 34(1), 208-218. doi:10.1590/1983-21252021v34n121rc Georgin, J., Franco, D. S. P., Netto, M. S., Piccilli, D. G. A., Foletto, E. L., & Dotto, G. L. (2021). Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. Environmental science and pollution research international. doi:10.1007/s11356-021-12813-0 Ha Ngan, N., Ang Lan, H., & Phuong Minh, N. (2021). Recycling Sprout-Growing Mediums in Urban Areas as Compost and New
Growing Mediums. Chemical Engineering Transactions, 83. doi:10.3303/CET2183065 Huaiyong, L., Jianbin, G., Bolun, Y., Weigang, C., Huan, Z., Xiaojing, Z., . . . Huifang, J. (2021). Construction of ddRADseq-Based High-Density Genetic Map and Identification of Quantitative Trait Loci for Trans-resveratrol Content in Peanut Seeds. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.644402 Ill-Min, C., Changhwan, L., Myeong Ha, H., Seung-Hyun, K., Hee-Yeon, C., Chang Yeon, Y., . . . Bimal Kumar, G. (2021). The Influence of Light Wavelength on Resveratrol Content and Antioxidant Capacity in Arachis hypogaeas L. Agronomy, 11(305), 305-305. doi:10.3390/agronomy11020305 Javed, F., Sharif, M. K., Pasha, I., & Jamil, A. (2021). PROBING THE NUTRITIONAL QUALITY OF READY-TO-USE THERAPEUTIC FOODS DEVELOPED FROM LOCALLY GROWN PEANUT, CHICKPEA AND MUNGBEAN FOR TACKLING MALNUTRITION. Pakistan Journal of Agricultural Sciences, 58(1), 205-212. doi:10.21162/PAKJAS/21.700 Kehinde, O. S. A., Tolulope, O. K., Johnson, A. A., Dotun, J. O., & Moruf, A. A. (2021). Response of groundnut (Arachis hypogaea L.) genotypes to accelerated ageing treatment. Notulae Scientia Biologicae, 13(1). doi:10.15835/nsb13110833 Kostandini, G., Tanellari, E., & Gaskell, J. (2021). THE EFFECT OF LAND TENURE AND EROSION MEASURES ON PRODUCTIVITY AND INVESTMENTS: PLOT AND HOUSEHOLD LEVEL EVIDENCE FROM MALI. Journal of Developing Areas, 55(2), 365. Kubra, G., Khan, M., Hussain, S., Iqbal, T., Muhammad, J., Ali, H., . . . Amir, R. (2021). Molecular characterization of Leucoanthocyanidin reductase and Flavonol synthase gene in Arachis hypogaea. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2021.01.024
Li, Y., Fang, F., Wei, J., Cui, R., Li, G., Zheng, F., & Tan, D. (2021). Physiological effects of humic acid in peanut growing in continuous cropping soil. Agronomy Journal, 113(1), 550-559. Liang, Y., Cason, J. M., Baring, M. R., & Septiningsih, E. M. (2021). Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.). Genetic Resources & Crop Evolution, 68(2), 629-637. Lixian, Q., Pingping, J., Yanyan, T., Leilei, P., Hongchang, J., Wenjie, Z., . . . Jingshan, W. (2021). Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants. Electronic Journal of Biotechnology, 49, 42-49. doi:10.1016/j.ejbt.2020.10.006 Luo, H., Guo, J., Yu, B., Chen, W., Zhang, H., Zhou, X., . . . Jiang, H. (2021). Construction of ddRADseq-Based High-Density Genetic Map and Identification of Quantitative Trait Loci for Trans-resveratrol Content in Peanut Seeds. Frontiers in Plant Science, 11, N.PAG-N.PAG Mara Gomes, F., GuimarÃEs Ribeiro, K., Alexandre De Souza, I., De Lima Silva, J., Nascimento Agarussi, M. C., Paula Da Silva, V., . . . Gomes Pereira, O. (2021). Chemical composition, fermentation profile, microbial population and dry matter recovery of silages from mixtures of palisade grass and forage peanut. Composición química, perfil de fermentación, población microbiana y recuperación de materia seca en ensilajes de Urochloa brizantha y Arachis pintoi., 9(1), 34-42. Martínez-Salgado, S., Romero-Arenas, O., Morales-Mora, L. A., Luna-Cruz, A., Rivera-Tapia, J. A., Silva-Rojas, H. V. V., & Andrade Hoyos, P. (2021). First Report of Macrophomina phaseolina Causing Charcoal Rot of Peanut (Arachis hypogaea L.) in Mexico. Plant disease. doi:10.1094/PDIS-02-21-0337-PDN Meena, H. N., Yadav, R. S., Jain, N. K., & Yadav, M. (2021). A novel pre‐emergence herbicide (Diclosulam) as an
environmentally friendly weed management option in peanut and its phytotoxicity evaluation. Weed Biology & Management, 21(1), 19-27. doi:10.1111/wbm.12219 Mondal, M., Skalicky, M., Garai, S., Hossain, A., Sarkar, S., Banerjee, H., . . . Laing, A. M. (2020). Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. AGRONOMY- BASEL, 10(10). doi:10.3390/agronomy10101513 Muralidharan, S., Poon, Y. Y., Wright, G. C., Haynes, P. A., & Lee, N. A. (2021). Quantitative proteomics analysis of high and low polyphenol expressing recombinant inbred lines (RILs) of peanut (Arachis hypogaea L.). Food Chemistry, 334, N.PAG- N.PAG. doi:10.1016/j.foodchem.2020.127517 Nankya, R., Mulumba, J. W., Lwandasa, H., Matovu, M., Isabirye, B., De Santis, P., . . . Vidigal, P. (2021). Diversity in Nutrient Content and Consumer Preferences of Sensory Attributes of Peanut (Arachis hypogaea L.) Varieties in Ugandan Agroecosystems. Sustainability (2071-1050), 13(5), 2658-2658. doi:10.3390/su13052658 Okello, D. K., Deom, C. M., & Puppala, N. (2021). Registration of ‘Naronut 2T’ groundnut. Journal of Plant Registrations, 15(1), 62-67. Olayinka, B. U., Abdulbaki, A. S., Mohammed, R. T., Alsamadany, H., Murtadha, R. B., Alzahrani, Y., . . . Etejere, E. O. (2021). Effect of Planting Methods on Growth and Yield of Groundnut Cultivars. Legume Research: An International Journal, 44(1), 74-80. doi:10.18805/LR-546 Olayinka, B. U., Abdulbaki, A. S., Mohammed, R. T., Alsamadany, H., Murtadha, R. B., Alzahrani, Y., . . . Etejere, E. O. (2021). Effect of Planting Methods on Growth and Yield of Groundnut Cultivars. Legume Research: An International
Journal, 44(1), 74-80. Oliveira Aparecido, L. E., Lorençone, J. A., Lorençone, P. A., Meneses, K. C., & Silva Cabral de Moraes, J. R. (2021). Climate risk to peanut cultivation in Brazil across different planting seasons. Journal of the Science of Food & Agriculture, 1. doi:10.1002/jsfa.1114 Paredes, J. A., Cazón, L. I., Oddino, C., Monguillot, J. H., Rago, A. M., & Molina, J. P. E. (2021). Efficacy of fungicides against peanut smut in Argentina. Crop Protection, 140. doi:10.1016/j.cropro.2020.105403 Patel, M., Rangani, J., Kumari, A., & Parida, A. K. (2020). Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation. Journal of Biotechnology, 323, 136-158. doi:10.1016/j.jbiotec.2020.08.008 Peng, Z., Chen, H., Tan, L., Shu, H., Varshney, R. K., Zhou, Z., . . . Wang, J. (2021). Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. Journal of Experimental Botany, 72(4), 1104-1118. doi:10.1093/jxb/eraa505 Peng, Z., Chen, H., Tan, L., Shu, H., Varshney, R. K., Zhou, Z., . . . Wang, J. (2021). Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. Journal of Experimental Botany, 72(4), 1104-1118. doi:10.1093/jxb/eraa505 Périnelle, A., Meynard, J.-M., & Scopel, E. (2021). Combining on-farm innovation tracking and participatory prototyping trials to develop legume-based cropping systems in West Africa. Agricultural Systems, 187. doi:10.1016/j.agsy.2020.102978
Purwaningsih, S., Agustiyani, D., & Antonius, S. (2021). Diversity, activity, and effectiveness of Rhizobium bacteria as plant growth promoting rhizobacteria (PGPR) isolated from Dieng, central Java. Iranian Journal of Microbiology, 13(1), 130-136. Qi, H., Liang, Y., Ding, Q., Zou, J., & Mauri, G. (2021). Automatic Identification of Peanut-Leaf Diseases Based on Stack Ensemble. Applied Sciences (2076-3417), 11(4), 1950-1950. Qiao, L., Jiang, P., Tang, Y., Pan, L., Ji, H., Zhou, W., . . . Wang, J. (2021). Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants. Electronic Journal of Biotechnology, 49, 42-49. doi:10.1016/j.ejbt.2020.10.006 Rath, S., Zamora-Re, M., Graham, W., Dukes, M., & Kaplan, D. (2021). Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agricultural Water Management, 246. doi:10.1016/j.agwat.2020.106634 https://www.sciencedirect.com/ science/article/abs/pii/S0378377420321818 Rath, S., Zamora-Re, M., Graham, W., Dukes, M., & Kaplan, D. (2021). Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agricultural Water Management, 246. doi:10.1016/j.agwat.2020.106634 Rathore, V. S., Nathawat, N. S., Bhardwaj, S., Yadav, B. M., Kumar, M., Santra, P., . . . Yadav, O. P. (2021). Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Scientific Reports, 11(1), 1-14. doi:10.1038/s41598-021-82968-w Ren, J., Zhang, H., Shi, X., Ai, X., Dong, J., Zhao, X., . . .
Yu, H. (2021). Genome-Wide Identification of Key Candidate microRNAs and Target Genes Associated with Peanut Drought Tolerance. DNA and cell biology, 40(2), 373-383. doi:10.1089/dna.2020.6245 Sathiasivan, K., Ramaswamy, J., & Rajesh, M. (2021). Struvite recovery from human urine in inverse fluidized bed reactor and evaluation of its fertilizing potential on the growth of Arachis hypogaea. Journal of Environmental Chemical Engineering, 9(1). doi:10.1016/j.jece.2020.104965 Sathiasivan, K., Ramaswamy, J., & Rajesh, M. (2021). Struvite recovery from human urine in inverse fluidized bed reactor and evaluation of its fertilizing potential on the growth of Arachis hypogaea. Journal of Environmental Chemical Engineering, 9(1). Sharma, S., Choudhary, B., Yadav, S., Mishra, A., Mishra, V. K., Chand, R., . . . Pandey, S. P. (2021). Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. Journal of Hazardous Materials, 404(Part A). doi:10.1016/j.jhazmat.2020.124155 Sinare, B., Miningou, A., Nebié, B., Eleblu, J., Kwadwo, O., Traoré, A., . . . Desmae, H. (2021). Participatory analysis of groundnut (Arachis hypogaea L.) cropping system and production constraints in Burkina Faso. Journal of Ethnobiology & Ethnomedicine, 17(1), 1-15. doi:10.1186/s13002-020-00429- Sri, P., Dwi, A., & Satjiya, A. (2021). Diversity, activity, and effectiveness of Rhizobium bacteria as plant growth promoting rhizobacteria (PGPR) isolated from Dieng, central Java. Iranian Journal of Microbiology, 13(1), 130-136. Steiner, F., Queiroz, L. F. M., Zuffo, A. M., da Silva, K. C., & Lima, I. M. d. O. (2021). Peanut response to co‐inoculation of Bradyrhizobium spp. and Azospirillum brasilense and molybdenum application in sandy soil of the Brazilian Cerrado.
Agronomy Journal, 113(1), 623-632. Sylwia Joanna, C., Karol, S., Joanna, D., Piotr, D., Ewelina, P., Krzysztof, F., . . . Robert, B. (2021). Bactericidal Properties of Rod-, Peanut-, and Star-Shaped Gold Nanoparticles Coated with Ceragenin CSA-131 against Multidrug- Resistant Bacterial Strains. Pharmaceutics, 13(425), 425-425. doi:10.3390/pharmaceutics13030425 Tan, G., Wang, H., Xu, N., Junaid, M., Liu, H., & Zhai, L. (2021). Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environmental Technology, 42(1), 9-19. doi:10.1080/09593330.2019.1620344 Tan, G., Wang, H., Xu, N., Junaid, M., Liu, H., & Zhai, L. (2021). Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environmental Technology, 42(1), 9-19. Tekam, M. K., Sultan, A., Mishra, S., Chechi, T. S., Singh, A., Buch, K., . . . Hans, A. L. (2021). Fungal Infection in Peanuts: Pipecolic acid prevents. Current Science (00113891), 120(5), 753-754. doi:10.1016/j.jhazmat.2020.124155 University, C. (2021). Developing heat-tolerant peanuts. Corn & Soybean Digest Exclusive Insight, N.PAG-N.PAG. Vijay Singh, R., Narayan Singh, N., Seema, B., Bhagirath Mal, Y., Mahesh, K., Priyabrata, S., . . . Om Parkash, Y. (2021). Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Scientific Reports, 11(1), 1-14. doi:10.1038/s41598-021-82968-w Wang, C., Wang, F., Wang, Z., Wei, Y., Chen, N., Du, Z., . . . Wu, L. (2021). Improving chemical and sensory quality of high- oleic peanut through agronomic manipulation. Oil Crop Science(Preprints).
Wang, C., Wang, F., Wang, Z., Wei, Y., Chen, N., Zubo, D., . . . Wu, L. (2021). Improving chemical and sensory quality of high-oleic peanut by application of foliar fertilizer. Oil Crop Science, 6(1), 50-52. doi:10.1016/j.ocsci.2021.03.00 Wang, S.-y., Li, L.-n., Fu, L.-y., Liu, H., Qin, L., Cui, C.- h., . . . Du, P. (2021). Development and characterization of new allohexaploid resistant to web blotch in peanut. Journal of Integrative Agriculture, 20(1), 55-64. doi:10.1016/S2095-3119(20)63228-2 Yao, Y., Gao, S., Ding, X., Li, P., & Zhang, Q. (2021). The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination. LWT. doi:10.1016/j.lwt.2021.111285 Zhang, H., Li Wang, M., Dang, P., Jiang, T., Zhao, S., Lamb, M., & Chen, C. (2021). Identification of potential QTLs and genes associated with seed composition traits in peanut (Arachis hypogaea L.) using GWAS and RNA-Seq analysis. Gene, 769, N.PAG-N.PAG. doi:10.1016/j.gene.2020.145215 Zhang, K., Liu, Y., Luo, L., Zhang, X., Li, G., Wan, Y., & Liu, F. (2021). Root traits of peanut cultivars with different drought resistant under drought stress at flowering and pegging phase. Acta Agriculturae Scandinavica: Section B, Soil & Plant Science, 1-14. doi:10.1080/09064710.2021.1897663 Zhu, H., Jiang, Y., Guo, Y., Huang, J., Zhou, M., Tang, Y., . . . Qiao, L. (2021). A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant physiology and biochemistry : PPB, 160, 175-183. doi:10.1016/j.plaphy.2021.01.014 Zhu, H., Jiang, Y., Guo, Y., Huang, J., Zhou, M., Tang, Y., . . . Qiao, L. (2021). A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiology & Biochemistry, 160, 175-183. doi:10.1016/j.plaphy.2021.01.014
Journal Articles — Fall 2020 Achar, P. N., Quyen, P., Adukwu, E. C., Sharma, A., Msimanga, H. Z., Nagaraja, H., & Sreenivasa, M. Y. (2020). Investigation of the Antifungal and Anti-Aflatoxigenic Potential of Plant- Based Essential Oils against Aspergillus flavus in Peanuts. Journal of fungi (Basel, Switzerland), 6(4). doi:10.3390/jof6040383 Ayodeji Simeon, A., Chan Sol, P., Adekunle, A., Oluyinka Abiona, O., & Olayiwola, A. (2020). Digestibility of Amino Acids in Protein-Rich Feed Ingredients Originating from Animals, Peanut Flour, and Full-Fat Soybeans Fed to Pigs. Animals, 10(2062), 2062-2062. doi:10.3390/ani10112062 Bagheri, H. (2020). Application of infrared heating for roasting nuts. Journal of Food Quality, 2020(8813047). Cha, C.-Y., & Lee, K.-G. (2020). Effect of roasting conditions on the formation and kinetics of furan in various nuts. Food chemistry, 331, 127338. doi:10.1016/j.foodchem.2020.127338 de Silva, D., Halken, S., Singh, C., Muraro, A., Angier, E., Arasi, S., . . . Roberts, G. (2020). Preventing food allergy in infancy and childhood: Systematic review of randomised controlled trials. Pediatric Allergy & Immunology, 31(7), 813-826. doi:10.1111/pai.13273 Dugardin, C., Cudennec, B., Tourret, M., Caron, J., Guérin- Deremaux, L., Behra-Miellet, J., . . . Ravallec, R. (2020). Explorative Screening of Bioactivities Generated by Plant- Based Proteins after In Vitro Static Gastrointestinal Digestion. Nutrients, 12(12), 3746. doi:10.3390/nu12123746 Fernandes, A. C. F., Vieira, N. C., Santana, Á. L. d., Gandra,
R. L. d. P., Rubia, C., Castro-Gamboa, I., . . . Macedo, G. A. (2020). Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW264.7 macrophages. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 145, 111619. doi:10.1016/j.fct.2020.111619 Gao, X., Bamba, A. S. A., Kundy, A. C., Mateva, K. I., Chai, H. H., Ho, W. K., . . . Massawe, F. (2020). Variation of Phenotypic Traits in Twelve Bambara Groundnut (Vigna subterranea (L.) Verdc.) Genotypes and Two F2 Bi-Parental Segregating Populations. Agronomy, 10(10), 1451. doi:10.3390/agronomy10101451 Garcia-Alvarez-Coque, J. M., Taghouti, I., & Martinez-Gomez, V. (2020). Changes in aflatoxin standards: implications for EU border controls of nut imports. Applied Economic Perspectives and Policy, 42(3), 524-541. doi/10.1093/aepp/ppy036 Gell, R. M., Horn, B. W., & Carbone, I. (2020). Genetic map and heritability of Aspergillus flavus. Fungal genetics and biology : FG & B, 144, 103478. doi:10.1016/j.fgb.2020.103478 Gong, A. D., Sun, G. J., Zhao, Z. Y., Liao, Y. C., & Zhang, J. B. (2020). Staphylococcus saprophyticus L-38 produces volatile 3,3-dimethyl-1,2-epoxybutane with strong inhibitory activity against Aspergillus flavus germination and aflatoxin production. World Mycotoxin Journal, 13(2), 247-258. Gundaraniya, S. A., Ambalam, P. S., & Tomar, R. S. (2020). Metabolomic Profiling of Drought-Tolerant and Susceptible Peanut ( Arachis hypogaea L.) Genotypes in Response to Drought Stress. ACS omega, 5(48), 31209-31219. doi:10.1021/acsomega.0c04601 Guo, Y., Wang, C., Zhang, J., Wang, Q., Afriyie, G., & Wang, Z. (2020). A distinct mitogenome of peanut worm Sipunculus nudus (Sipuncula, Sipunculidae) from Beibu Gulf. Mitochondrial DNA: Resources, 5(2), 1839.
Hashemi, S. M. B., Hashemi Moosavi, M., Hossein Asadi‐ Yousefabad, S., Omidi, M., & Mousavi Khaneghah, A. (2020). Effect of storage temperature on fungal growth and aflatoxin formation in oils extracted from wild almond nuts. Journal of Food Processing & Preservation, 44(12), 1-5. doi:10.1111/jfpp.14987 Hou, M., Zhang, Y., Mu, G., Cui, S., Yang, X., & Liu, L. (2020). Molecular cloning and expression characterization of flavonol synthase genes in peanut (Arachis hypogaea). Scientific Reports, 10(1), 17717. doi:10.1038/s41598-020-74763-w Igarashi, K., & Kurata, D. (2020). Effect of High-Oleic Peanut Intake on Aging and Its Hippocampal Markers in Senescence- Accelerated Mice (SAMP8). Nutrients, 12(11), 3461. doi:10.3390/nu12113461 Jeammuangpuk, P., Promchote, P., Duangpatra, J., Chaisan, T., Onwimol, D., & Kvien, C. K. (2020). Enhancement of Tainan 9 Peanut Seed Storability and Germination under Low Temperature. International Journal of Agronomy, 1. Junhua, L., Zemin, H., Youlin, X., Yong, L., & Boshou, L. (2020). A review on biosynthesis and genetic regulation of aflatoxin production by major Aspergillus fungi. Oil Crop Science, 5(4), 166-173. doi:10.1016/j.ocsci.2020.11.001 Kang, J., Peng, Q., Zhang, C., Zhang, N., & Fang, H. (2020). DESIGN AND TESTING OF A PUNCHING-ON-FILM PRECISION HOLE SEEDER FOR PEANUTS. Biochemical Journal, 477(19), 1685. Khan, M. M. H., Rafii, M. Y., Ramlee, S. I., Jusoh, M., & Mamun, A. (2020). Genetic Variability, Heritability, and Clustering Pattern Exploration of Bambara Groundnut (Vigna subterranea L. Verdc) Accessions for the Perfection of Yield and Yield-Related Traits. BioMed Research International, 1-31. doi:10.1155/2020/2195797
Kinfe, T., Gebeyehu, T., & Dereje, A. (2020). Effect of starter nitrogen and phosphorus fertilizer rates on yield and yield components, grain protein content of groundnut (Arachis Hypogaea L.) and residual soil nitrogen content in a semiarid north Ethiopia. Heliyon, 6(10). doi:10.1016/j.heliyon.2020.e05101 Kostandini, G., Tanellari, E., & Gaskell, J. (2020). The Effect of Land Tenure and Erosion Measures on Productivity and Investments: Plot and Household Level Evidence from Mali. The Journal of Developing Areas, 55(2). Macri, A. M., Pop, I., Simeanu, D., Toma, D., Sandu, I., Pavel, L. L., & Mintas, O. S. (2020). The Occurrence of Aflatoxins in Nuts and Dry Nuts Packed in Four Different Plastic Packaging from the Romanian Market. Microorganisms, 9(1). doi:10.3390/microorganisms9010061 Martin, L. J., Dias, J. L. C. S., Sellers, B. A., Ferrell, J. A., Leon, R. G., & Vendramini, J. M. B. (2020). Tolerance of pintoi peanut to PRE and POST herbicides. Weed Technology, 34(6), 870. Mbah, E. U., Keke, C., & Ogidi, E. G. O. (2020). Agronomic and productivity efficiency of two animal manure sources on intercropped maize-groundnut in the derived savannah. Agricultura Tropica et Subtropica, 53(4), 215-228. doi:10.2478/ats-2020-0022 Moradi, M., Rohani, M., Fani, S. R., Mosavian, M. T. H., Probst, C., & Khodaygan, P. (2020). Biocontrol potential of native yeast strains against Aspergillus flavus and aflatoxin production in pistachio. Food Additives & Contaminants. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 37(11), 1963. doi:10.1080/19440049.2020.1811901 Murathan, Z. T., Kaya, A., Erbil, N., Arslan, M., Dıraz, E., & Karaman, Ş. (2020). Comparison of Bioactive Components, Antimicrobial and Antimutagenic Features of Organically and
Conventionally Grown Almond Hulls. Vergleich von bioaktiven Komponenten, antimikrobiellen und antimutagenen Eigenschaften in grünen Schalen ökologisch und konventionell angebauter Mandeln., 62(4), 463-472. doi:10.1007/s10341-020-00525-7 Norlia, M., Jinap, S., Nor-Khaizura, M. A. R., Radu, S., John, J. M., Rahman, M. A. H., . . . Sharif, Z. (2020). Modelling the effect of temperature and water activity on the growth rate of Aspergillus flavus and aflatoxin production in peanut meal extract agar. International Journal of Food Microbiology, 335, 108836. doi:10.1016/j.ijfoodmicro.2020.108836 O’Brien, P. L., Thomas, A. L., Sauer, T. J., & Brauer, D. K. (2020). Foliar nutrient concentrations of three economically important tree species in an alley-cropping system. Journal of Plant Nutrition, 43(17), 2557. doi:10.1080/01904167.2020.1783303 Olawale, O., Akinyemi, B. A., & Attabo, F. (2020). Optimization of the Mixing Ratio for Particleboard Production from Groundnut Shell and Rice Husk. Acta Technologica Agriculturae, 23(4), 168. Otyama, P. I., Kulkarni, R., Chamberlin, K., Ozias-Akins, P., Chu, Y., Lincoln, L. M., . . . Cannon, E. K. S. (2020). Genotypic Characterization of the U.S. Peanut Core Collection. G3 (Bethesda, Md.), 10(11), 4013-4026. doi:10.1534/g3.120.401306 Peng, Z., Chen, H., Tan, L., Shu, H., Varshney, R. K., Zhou, Z., . . . Wang, J. (2020). Natural Polymorphisms in a Pair of NSP2 Homoeologs Can Cause Loss of Nodulation in Peanut. Journal of experimental botany. doi:10.1093/jxb/eraa505 Pilaisangsuree, V., Anuwan, P., Supdensong, K., Lumpa, P., Kongbangkerd, A., & Limmongkon, A. (2020). Enhancement of adaptive response in peanut hairy root by exogenous signalling molecules under cadmium stress. Journal of Plant Physiology, 254, N.PAG-N.PAG. doi:10.1016/j.jplph.2020.153278
You can also read