Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation

Page created by Ellen Mason
 
CONTINUE READING
12

Genetic structure of Octopus vulgaris around the Iberian
Peninsula and Canary Islands as indicated by
microsatellite DNA variation
C. Cabranes, P. Fernandez-Rueda, and J. L. Martı́nez

Cabranes, C., Fernandez-Rueda, P., and Martı́nez, J. L. 2008. Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary
Islands as indicated by microsatellite DNA variation. – ICES Journal of Marine Science, 65: 12– 16.
Microsatellite DNA markers were used for a genetic study of Octopus vulgaris, a cephalopod species of great commercial interest to
Spain and Portugal, and therefore subjected to intensive fishing. Improving the demographic knowledge of marine resources supports
more-responsible management and conservation. Genetic variation at five microsatellite loci screened in six samples from NE Atlantic
and Mediterranean coasts of the Iberian Peninsula was high [mean number of alleles ¼ 18.3, mean He ¼ 0.874]. Analysis of the micro-
satellites allowed significant subpopulation structure to be identified, consistent with an isolation-by-distance model for Atlantic

                                                                                                                                                       Downloaded from http://icesjms.oxfordjournals.org/ by guest on October 26, 2015
populations. Differences between pairs of samples separated by ,200 km were not significant. From a fisheries management perspec-
tive, the results support coordinated management of neighbouring stocks of O. vulgaris around the Iberian Peninsula.
Keywords: genetic structure, microsatellite DNA, Octopus vulgaris, population differentiation.
Received 6 August 2007; accepted 6 November 2007; advance access publication 17 December 2007.
C. Cabranes and P. Fernandez-Rueda: Centro de Experimentación Pesquera, Consejerı́a de Medio Rural y Pesca, Avenida Principe de Asturias s/n,
33212 Gijón, Asturias, Spain. J. L. Martı́nez: Unidad de Secuenciación, Servicios Cientı́fico-Técnicos, Universidad de Oviedo, Campus “El Cristo”,
33006 Oviedo, Asturias, Spain. Correspondence to C. Cabranes: tel: þ34 985 319711; fax: þ34 985 312899; e-mail: carmecb@princast.es

Introduction                                                                (ICES, 2006). Despite such commercial interest, studies on the
Octopus vulgaris is a benthic cephalopod, distributed broadly on            identity and distribution of Iberian stocks are scarce.
rocky, sandy, and muddy substrata from the coast to the edge of                 Molecular genetic approaches have been applied successfully to
the continental shelf at depths up to 200 m and in diverse habitats.        stock discrimination studies in fisheries (Murphy et al., 2002).
The species has been long considered a cosmopolitan resident of             Knowledge of the genetic structure of a species can be a useful
temperate and tropical seas (Roper et al., 1984), but the possible          tool for management and can be used to determine whether a
occurrence of cryptic species among O. vulgaris-like octopods               locally collapsed stock can be repopulated by immigrants. Such
has been reported (Guerra et al., 1999; Söller et al., 2000). The          information may assist in the identification of different stocks of
species has a lifespan of 1 year, and juvenile recruitment is sen-         exploited species, characterized by different population par-
sitive to unpredictable environmental fluctuations. In some cases,          ameters such as recruitment and mortality patterns (Maltagliati
uncontrolled harvesting in certain areas makes it essential to have         et al., 2002). Large stocks of exploited species may be impacted
a clear picture of population substructuring, to allow rational             by harvesting even when they show just modest population
management of the resource.                                                 decline. This may occur through genetic erosion resulting from
    Octopus vulgaris fixes its eggs in rocky caves or to an appropri-       genetic drift, inbreeding, prolonged bottlenecks, or through les-
ate substratum, and there is a paralarval phase, but adults have            sened fitness resulting from chance fixation of detrimental alleles
limited migratory capacity (Guerra, 1992). It is thought that               (Ryman et al., 1995).
adult O. vulgaris forage around a “home-range” of 15 m                         Genetic markers can produce evidence of stock separation, so
(Mather, 1993), but may make inshore –offshore migrations                   providing the basis for better management of whole populations
related to spawning (Mangold, 1983). The currents that transport            and thence sustainable fisheries. Microsatellite DNA loci have
fish larvae may also transport octopus paralarvae, so there is scope        been extensively used in population studies, because they
for wider octopus dispersal during the early stages of life.                provide highly polymorphic loci that can identify fine-scale struc-
    The species is of great interest as a commercial resource for           turing (Shaw et al., 1999; Casu et al., 2002; Perez-Losada et al.,
Spain and Portugal and is therefore subjected to heavy fishing,             2002; Murphy et al., 2002; Castillo et al., 2005). Recently, micro-
carried out by trawling and by various small-scale gears, such as           satellite markers have been isolated for O. vulgaris (Greatorex
traps, pots, fykenets, and setnets. Total annual cephalopod land-           et al., 2000).
ings in the Iberian Peninsula have ranged between 11 151 and                    The aim of the present study was to use microsatellite DNA
17 514 t for the past 9 years; the catches represent 97 –99%                markers to enhance knowledge of genetic structuring in the O. vul-
of the total catch of the species in the whole ICES area                    garis population around the Iberian Peninsula and Canary Islands.

# 2007 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands                                                   13

Material and methods                                                   equilibrium and the statistical significance of heterozygote excess
Sampling                                                               or deficit were tested using the Fisher’s exact test, with the level
                                                                       of significance determined by a Markov chain method using
Six samples of O. vulgaris were collected at five Atlantic sites and
                                                                       GENEPOP 3.3 software (Raymond and Rousset, 1995). The
one in the Mediterranean Sea, around the Iberian Peninsula and
                                                                       same software was used to test for genotypic linkage disequili-
Canary Islands, between March 2005 and March 2006. One
                                                                       brium for each pair of loci in each population.
sample was from the Cantabrian Sea, north of the Iberian
                                                                           To estimate genetic differentiation among samples, two
Peninsula (Asturias, n ¼ 34), three from the west coast of the
                                                                       methods were used. First, we tested for simple frequency differen-
Iberian Peninsula (Galicia, n ¼ 48; Portugal, n ¼ 48; and Cádiz,
                                                                       tiation between pairs of samples with Fisher’s exact test
n ¼ 35), another from the Canary Islands (n ¼ 33), and the last
                                                                       implemented in the GENEPOP 3.3 software package. Second, we
from the Mediterranean Sea, east of the Iberian Peninsula
                                                                       estimated the pairwise genetic differentiation among samples
(Murcia, n ¼ 48) (Figure 1). All samples were from adult octo-
                                                                       using FST (Weir, 1996) with the FreeNA software package
puses. From each animal, a small piece of muscular tissue from
                                                                       (Chapuis and Estoup, 2007).
the tip of the arm was excised and preserved in absolute ethanol.
                                                                           To quantify genetic affinities among samples, pairwise Chord
                                                                       distances, Dchord, (Cavalli-Sforza and Edwards, 1967) were calcu-
DNA extraction and microsatellite analysis                             lated from a dataset corrected for null alleles using the FreeNA
DNA was extracted following the Chelex-based method described          software package (Chapuis and Estoup, 2007). The correlation
by Estoup et al. (1996). All six samples were screened for variation   coefficient between the matrix of Chord genetic distances and geo-

                                                                                                                                              Downloaded from http://icesjms.oxfordjournals.org/ by guest on October 26, 2015
at five polymorphic microsatellite loci (Oct3, Oct8, Ov6, Ov10,        graphical distances was calculated and its probability estimated by
and Ov12) previously isolated and characterized for O. vulgaris        a Mantel test. Both genetic distances and the Mantel test were
by Greatorex et al. (2000). PCR reactions were carried out under       calculated using the GENETIX 4.02 software package (Belkhir
conditions set out in Greatorex et al. (2000) in a total volume of     et al., 1996).
20 ml. Amplification products were resolved on an ABI PRISM                A dendrogram based on Chord genetic distances
3100 Genetic Analyser, and analysed using GeneMapper v.3.5             (Cavalli-Sforza and Edwards, 1967) was constructed with boot-
software (Applied Biosystems).                                         strap support for branches (2000 replicates) using the UPGMA
                                                                       method of clustering, employing the program NEIGHBOR of
Data analysis                                                          the PHYLIP 3.6 computer package (Felsenstein, 1993). Bootstrap
The software Micro-Checker 2.2.3 (Van Oosterhout et al. 2004)          support on branches is computed by resampling loci with the
was used to identify possible genotyping errors (i.e. stuttering,      program SEQBOOT of the PHYLIP 3.6 computer package
large allele dropout, and null alleles) within the microsatellite      (Felsenstein, 1993). The dendrogram was visualized with the
dataset by performing 1000 randomizations. Microsatellite poly-        program MEGA.4 (Tamura et al., 2007).
morphism within samples was measured as the mean number                    A sequential Bonferroni technique (Rice, 1989) was used to
of alleles (Na) per locus, and observed and unbiased expected          adjust significance levels for multiple simultaneous comparisons.
heterozygosity was calculated using the GENETIX 4.02 software
package (Belkhir et al., 1996). Deviations from Hardy –Weinberg        Results
                                                                       Estimates of variability at the five microsatellite DNA loci within
                                                                       all population samples, heterozygosity (Ho and He) within and
                                                                       means across loci and samples, size distributions and mean Na
                                                                       across loci, and tests for deviation from Hardy –Weinberg out-
                                                                       crossing expectations within loci are listed in Table 1. All
                                                                       samples revealed a high level of genetic variability. The locus
                                                                       Ov12 had the most alleles (56), and the locus Ov06 the least (24).
                                                                           Within-sample variability was uniformly high across all
                                                                       samples: the mean Na ranged between 16.2 from the Canary
                                                                       Islands and 20.0 from Murcia. The mean observed (Ho) and
                                                                       unbiased expected heterozygosity (He) ranged between 0.664 and
                                                                       0.837, and between 0.835 and 0.909, respectively. In terms of con-
                                                                       formity to Hardy –Weinberg genetic equilibrium, 13 of 30 single-
                                                                       locus tests for deviations from outcrossing predictions yielded
                                                                       significant results. All populations showed significant deviations
                                                                       from Hardy –Weinberg equilibrium for locus Oct03; the Canary
                                                                       Islands and Portugal showed significant deviations from Hardy–
                                                                       Weinberg equilibrium for locus Oct08, and all populations
                                                                       except Murcia showed significant deviations from equilibrium
                                                                       for locus Ov12. All tests except one (Oct08 from Portugal)
                                                                       remained significant when adjusted for table-wide significance
                                                                       by a sequential Bonferroni procedure. These deviations were
                                                                       always attributable to a significant deficit of heterozygotes with
                                                                       respect to those expected under Hardy–Weinberg conditions.
Figure 1. Geographic locations of Octopus vulgaris samples taken in        The presence of null alleles was detected for locus Oct03 in all
the Atlantic and Mediterranean.                                        populations and for locus Ov12 in all populations except the
14                                                                                                                                                                                                                                                                                                                                                                                                                                                             C. Cabranes et al.

Table 1. Levels of genetic variations observed at five microsatellite DNA loci within six Iberian Peninsula Octopus vulgaris samples: allele size (in
base pairs), number of alleles (Na), observed heterozygosity (Ho) and unbiased expected heterozygosity (He), and means across all samples and
loci.
Locus and parameter                                                                                         Asturias                                                  Galicia                                                    Cádiz                                                     Portugal                                                   Canary Islands                                                                   Murcia                                                     Mean
Oct03
.....................................................................................................................................................................................................................................................................
         Number of alleles                                                                                 25                                                         26                                                         21                                                         21                                                         22                                                                               27                                                         23.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         Allele                size                                                                        126–187                                                    117–195                                                    117          –     177                                     117          –     177                                     117          –180                                                                117          –187                                          117          –195
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         H     o                                                                                           0.652                                                      0.593                                                      0.529                                                      0.541                                                      0.387                                                                            0.586                                                      0.548
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         He                                                                                                0.957**                                                    0.960***                                                   0.954***                                                   0.915***                                                   0.948***                                                                         0.958***                                                   0.949
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Ov06
.....................................................................................................................................................................................................................................................................
         Number of alleles                                                                                 8                                                          14                                                         12                                                         15                                                         13                                                                               17                                                         13.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         Allele                size                                                                        129–170                                                    119–161                                                    117          –     154                                     126          –     179                                     117          –154                                                                117          –170                                          117          –179
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         H     o                                                                                           0.735                                                      0.707                                                      0.914                                                      0.867                                                      0.807                                                                            0.902                                                      0.822
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         He                                                                                                0.724                                                      0.739                                                      0.880                                                      0.887                                                      0.855                                                                            0.891                                                      0.829
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Oct08
.....................................................................................................................................................................................................................................................................
         Number of alleles                                                                                 17                                                         17                                                         18                                                         17                                                         17                                                                               19                                                         17.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Downloaded from http://icesjms.oxfordjournals.org/ by guest on October 26, 2015
         Allele                size                                                                        130–165                                                    111–167                                                    128          –     165                                     128          –     169                                     115          –163                                                                115          –165                                          111          –169
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         H     o                                                                                           0.969                                                      0.881                                                      0.849                                                      0.738                                                      0.655                                                                            0.907                                                      0.833
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         He                                                                                                0.921                                                      0.903                                                      0.915                                                      0.915*                                                     0.905**                                                                          0.919                                                      0.913
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Ov10
.....................................................................................................................................................................................................................................................................
         Number of alleles                                                                                 17                                                         16                                                         19                                                         17                                                         13                                                                               12                                                         15.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         Allele                size                                                                        115–150                                                    115–145                                                    109          –     148                                     111          –     152                                     117          –143                                                                107          –137                                          107          –152
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         H     o                                                                                           0.875                                                      0.900                                                      0.914                                                      0.870                                                      0.719                                                                            0.911                                                      0.865
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         He                                                                                                0.918                                                      0.909                                                      0.932                                                      0.914                                                      0.815                                                                            0.836                                                      0.887
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Ov12
.....................................................................................................................................................................................................................................................................
         Number of alleles                                                                                 18                                                         26                                                         17                                                         27                                                         16                                                                               25                                                         21.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         Allele                size                                                                        175–371                                                    170–375                                                    162          –     330                                     167          –     399                                     175          –375                                                                167          –338                                          162          –399
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         H     o                                                                                           0.632                                                      0.650                                                      0.484                                                      0.711                                                      0.750                                                                            0.879                                                      0.684
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
         He                                                                                                0.936***                                                   0.939***                                                   0.903***                                                   0.913***                                                   0.895*                                                                           0.945                                                      0.922
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
N                                                                                                          34                                                         48                                                         35                                                         48                                                         33                                                                               48                                                          –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Mean                   N    a                                                                              17.0                                                       19.8                                                       17.4                                                       19.4                                                       16.2                                                                             20.0                                                       18.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Mean                   Ho                                                                                  0.773                                                      0.746                                                      0.738                                                      0.745                                                      0.664                                                                            0.837                                                      0.750
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Mean He                                                                                                    0.854                                                      0.850                                                      0.909                                                      0.900                                                      0.835                                                                            0.898                                                      0.874
Deviations from Hardy– Weinberg expectations within loci: *p , 0.05; **p , 0.01; ***p , 0.001. Emboldened values are not significant at p , 0.05 after
sequential Bonferroni correction.

Canary Islands and Murcia. Locus Oct08 showed null alleles only                                                                                                                                                                                                         The fact that samples clustered by geographic distance is remark-
for Portugal and the Canary Islands, and for loci Ov06 and Ov10,                                                                                                                                                                                                        able. Neighbouring populations such as Portugal and Cádiz,
null alleles were not detected for any population.                                                                                                                                                                                                                      and Asturias and Galicia grouped together, whereas the
    In terms of genetic differentiation between samples, p-values                                                                                                                                                                                                       Mediterranean sample (Murcia) was separate from the rest.
estimated by pairwise differentiation were statistically significant
in all cases except Portugal –Cádiz (Table 2). However, after                                                                                                                                                                                                          Table 2. Statistical significance (p-values) of pairwise genic
                                                                                                                                                                                                                                                                        differentiation test between samples (above diagonal). Pairwise
sequential Bonferroni adjustment, Asturias –Galicia was not stat-
                                                                                                                                                                                                                                                                        estimates of multilocus FST between samples of Octopus vulgaris
istically significant (p , 0.05). Estimation of FST indicated signifi-                                                                                                                                                                                                  (below diagonal).
cant levels of intersample genetic variance in all pairwise
comparisons except Portugal– Cádiz (p , 0.05), as shown in                                                                                                                                                                                                                                                        Asturias Galicia Cádiz                                                                              Portugal Canary                                                               Murcia
Table 2. Chord genetic distances (Cavalli-Sforza and Edwards,                                                                                                                                                                                                                                                                                                                                                                                                Islands
1967) were lowest between the geographically closest pairs of                                                                                                                                                                                                           Asturias                                    –                                   0.034 ,0.001 ,0.001 ,0.001                                                                                                                     ,0.001
                                                                                                                                                                                                                                                                        . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .

samples (Portugal–Cádiz, 0.018; Table 3).                                                                                                                                                                                                                              Galicia                                       0.014*                           –                              ,0.001                             ,0.001                               ,0.001                                   ,0.001
                                                                                                                                                                                                                                                                        . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
    There was a pattern of increasing genetic differences with                                                                                                                                                                                                          Cádiz                                        0.035*                             0.020*                             –                                   0.240 ,0.001                                                           ,0.001
                                                                                                                                                                                                                                                                        . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
increasing geographic distance between samples for Atlantic                                                                                                                                                                                                             Portugal                                      0.025*                             0.012*                              0.005                             –                              ,0.001                                   ,0.001
                                                                                                                                                                                                                                                                        . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
material, shown by the Mantel test for Chord genetic distance                                                                                                                                                                                                           Canary                                        0.054*                             0.036*                              0.013*                             0.015*                              –                                  ,0.001
(Cavalli-Sforza and Edwards, 1967; p ¼ 0.03). Otherwise, the                                                                                                                                                                                                            Islands
                                                                                                                                                                                                                                                                        . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .
Mantel test failed to reveal isolation-by-distance if Mediterranean                                                                                                                                                                                                     Murcia                                        0.038*                             0.033*                              0.026*                             0.021*                               0.042*                                 –
and Atlantic populations were considered.
                                                                                                                                                                                                                                                                        Emboldened values are not significant at p , 0.05 after sequential
    The UPGMA dendrogram constructed from Chord genetic dis-                                                                                                                                                                                                            Bonferroni correction.
tances (Cavalli-Sforza and Edwards, 1967) is shown in Figure 2.                                                                                                                                                                                                         *p , 0.05.
Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands                                                                                                                                                                                                                                         15

Table 3. Chord genetic distances among samples from the                                                                                                                                                                                                    (Casu et al., 2002). If deviations were the result of the presence
different regions studied.                                                                                                                                                                                                                                 of null alleles, they would probably be found in all samples, but
                                                                                                                                                                                                                                                           in the present study, the Ov06 locus was in Hardy– Weinberg equi-
                                                          Asturias                              Galicia                           Cádiz                       Portugal                                Canary
                                                                                                                                                                                                       Islands                                             librium for all populations. The Atlantic sample (Vig) analysed by
                                                                                                                                                                                                                                                           Casu et al. (2002) and the sample for Galicia analysed here were
Galicia                                                    0.021                                   –                                –                            –                                      –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
                                                                                                                                                                                                                                                           from the same population, so differences found with regard to
Cádiz                                                     0.021                                     0.020                          –                            –                                      –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .   Hardy –Weinberg equilibrium could be caused by temporal vari-
Portugal                                                   0.023                                     0.019                            0.018                      –                                      –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .   ation in the population as well as differences in the techniques
Canary                                                     0.032                                     0.032                            0.020 0.021                                                       –                                                  employed.
Islands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .       Microsatellite loci Ov10 and Ov12 were also employed in an
Murcia                                                     0.039                                     0.038                            0.033 0.033                                                         0.041                                            earlier genetic study of O. vulgaris (Murphy et al., 2002). In that
                                                                                                                                                                                                                                                           study, most populations showed close conformity to Hardy –
                                                                                                                                                                                                                                                           Weinberg equilibrium for the Ov10 microsatellite locus and sig-
                                                                                                                                                                                                                                                           nificant deviations for the Ov12 microsatellite, so supporting the
Discussion                                                                                                                                                                                                                                                 results of the present study for these microsatellite loci.
The utility of microsatellite DNA markers for examining subtle                                                                                                                                                                                                 Two estimators of genetic divergence (exact test of sample
population genetic structuring within the Cephalopoda has been                                                                                                                                                                                             differentiation and FST) were used to test the extent of genetic
demonstrated previously (Shaw et al., 1999; Perez-Losada et al.,                                                                                                                                                                                           difference within populations of O. vulgaris. The exact test and
2002). Our study has shown a high degree of genetic variability

                                                                                                                                                                                                                                                                                                                                    Downloaded from http://icesjms.oxfordjournals.org/ by guest on October 26, 2015
                                                                                                                                                                                                                                                           FST gave similar results for most samples and significant levels of
within and between populations of O. vulgaris at all microsatellite                                                                                                                                                                                        inter-sample differentiation for O. vulgaris around the Iberian
loci, a finding particularly notable for Ov12 with its 56 alleles. In                                                                                                                                                                                      Peninsula and Canary Islands, except for Portugal– Cádiz.
previous studies, Casu et al. (2002) found a similar Na (21) for                                                                                                                                                                                           Asturias –Galicia revealed no significant difference with an exact
the locus Ov06, and Murphy et al. (2002) found a high level of                                                                                                                                                                                             test after sequential Bonferroni correction.
polymorphism in O. vulgaris for the loci Ov10 and Ov12. For                                                                                                                                                                                                    A notable result of our study is the existence of a fine spatial
locus Ov12, the mean Na we determined was lower than obtained                                                                                                                                                                                              substructure in O. vulgaris populations in the Atlantic which is a
by Murphy et al. (2002), whereas for locus Ov10, the polymorph-                                                                                                                                                                                            function of geographical distance. Significant Mantel tests were
ism was similar in both studies. The differences between the results                                                                                                                                                                                       obtained for Chord genetic distances (Cavalli-Sforza and
of the two studies could be a consequence of the different tech-                                                                                                                                                                                           Edwards, 1967), and those results showed a population model of
niques used to resolve PCR products and/or the different                                                                                                                                                                                                   isolation-by-distance for the Atlantic populations.
sampling area.                                                                                                                                                                                                                                                 Previous studies of the genetic structure of O. vulgaris from the
    Observed and expected heterozygosity values were high (mean                                                                                                                                                                                            Mediterranean Sea using allozymes (Maltagliati et al., 2002) and
Ho 0.750, mean He 0.874), in accord with earlier studies on cepha-                                                                                                                                                                                         microsatellite loci (Casu et al., 2002) excluded isolation-
lopods (Shaw et al., 1999; Perez-Losada et al., 2002; Garoia et al.,                                                                                                                                                                                       by-distance in O. vulgaris Mediterranean populations.
2004) and on O. vulgaris specifically (Casu et al., 2002; Murphy                                                                                                                                                                                           Maltagliati et al. (2002) suggested that O. vulgaris in the
et al., 2002).                                                                                                                                                                                                                                             Mediterranean followed a basic island model in a background of
    Deviations from Hardy –Weinberg equilibrium were observed                                                                                                                                                                                              high gene flow. One explanation for the different results could
for some populations, basically for loci Oct03 and Ov12, owing                                                                                                                                                                                             be the difference in geographical area studied.
to a deficit of heterozygotes in terms of those expected. The pre-                                                                                                                                                                                             Additionally, in the case of the Maltagliati et al. (2002) result,
sence of null alleles was confirmed as the cause of the deviation.                                                                                                                                                                                         we can explain divergence between results because they used allo-
Deficiencies in heterozygous genotypes have been found before                                                                                                                                                                                              zyme electrophoresis to investigate genetic variability. Previous
in cephalopod populations and suggest the presence of non-                                                                                                                                                                                                 studies (Shaw et al., 1999; Perez-Losada et al., 2002) found that
amplified alleles (null alleles) as the cause of the observed depar-                                                                                                                                                                                       microsatellites have a greater power than allozymes to resolve
tures from Hardy –Weinberg equilibrium (Shaw et al., 1999;                                                                                                                                                                                                 genetic relationships among closely related subpopulations of
Perez-Losada et al., 2002).                                                                                                                                                                                                                                aquatic species, with a facility for gene flow on a small geographical
    A previous study of the genetic structure of the Ov06 O. vulgaris                                                                                                                                                                                      scale, and are more suitable for resolving historical relationships at
microsatellite locus from the Mediterranean Sea, but which                                                                                                                                                                                                 an intraspecific level. In the case of the analysis of Casu et al.
included an Atlantic Ocean sample (Vig), detected deficiencies                                                                                                                                                                                             (2002), the use of just one microsatellite (Ov6) may not have
of heterozygous genotypes for most of the populations analysed,                                                                                                                                                                                            been powerful enough to find associations of genetic differen-
and the presence of null alleles was proposed as a possible cause                                                                                                                                                                                          tiation with geographic distribution of samples.
                                                                                                                                                                                                                                                               In this study, divergence was observed with the distance iso-
                                                                                                                                                                                                                                                           lation model when all populations (Atlantic and Mediterranean)
                                                                                                                                                                                                                                                           were included in the analysis. A possible explanation could be
                                                                                                                                                                                                                                                           that the Atlantic and the Mediterranean have been isolated
                                                                                                                                                                                                                                                           several times through the course of history, perhaps associated
                                                                                                                                                                                                                                                           with substantial environmental changes in the latter
                                                                                                                                                                                                                                                           (Maldonado, 1985; Bianco, 1990).
                                                                                                                                                                                                                                                               Our results failed to show significant differences between pairs
                                                                                                                                                                                                                                                           of samples separated by ,200 km (Portugal–Cádiz), so from a
Figure 2. UPGMA tree constructed on the basis of Chord genetic                                                                                                                                                                                             fisheries management perspective, the results may be considered
distances between samples. Bootstrap support from 2000 replications                                                                                                                                                                                        as supporting coordinated management of neighbouring stocks
is indicated on the branches.                                                                                                                                                                                                                              around the Iberian Peninsula.
16                                                                                                                                 C. Cabranes et al.

Acknowledgements                                                            ICES. 2006. Report of the Working Group on Cephalopod Fisheries
                                                                                and Life History. ICES Document CM 2006/LRC: 14. 43 pp.
We thank several people at the “Instituto Canario Ciencias
                                                                            Maldonado, A. 1985. Evolution of the Mediterranean basins and a
Marinas”, CIFAP, IMIDA, “D. Xeneral Recursos Mariños”
                                                                                reconstruction of the Cenozoic palaeoceanography. In Western
(Spain), and IPIMAR (Portugal) who collected the tissue                         Mediterranean, pp. 18 – 61. Ed. by R. Margalef. Pergamon Press,
samples for this work, especially J. Ro, J. L. Muñoz, J. Cerezo,               London. 374 pp.
R. Arnaiz, and M. Gaspar. We also thank the Luarca and Puerto               Maltagliati, F., Belcari, P., Cau, D., Casu, M., Sartor, P., Vargiu, G., and
de Vega Fishermen’s Guilds staff for their collaboration in the col-            Castelli, A. 2002. Allozyme genetic variability and gene flow in
lection of samples in Asturias. Eva Garcı́a Vazquez, Gonzalo                    O. vulgaris (Cephalopoda, Octopodidae) from the Mediterranean
Machado, and Daniel Campo Falgueras collaborated in the statisti-               Sea. Bulletin of Marine Science, 71: 473– 486.
cal analysis, and M. Casu and an anonymous referee made valuable            Mangold, K. 1983. Octopus vulgaris. In Cephalopod Life Cycles,
                                                                                1, pp. 335– 364. Ed. by P. R. Boyle. Academic Press, New York.
comments on the submitted manuscript.
                                                                                516 pp.
                                                                            Mather, J. A. 1993. Octopuses as predators: implications for manage-
References                                                                      ment. In Recent Advances in Cephalopod Fisheries Biology,
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhmme, F. 1996.         pp. 275 – 282. Ed. by T. Okutani, R. K. O’Dor, and T. Kubodera.
   GENETIX 4.02, logiciel sous WindowsTM pour la génêtique des                Tokai University Press, Tokyo. 752 pp.
   populations. Laboratoire Génome, Populations, Interactions,             Murphy, J. M., Balguerı́as, E., Key, L. N., and Boyle, P. R. 2002.
   CNRS URM 5000, Université de Montpellier II, Montpellier.                   Microsatellite DNA markers discriminate between two Octopus
Bianco, P. G. 1990. Potential role of the palaeohistory of the                  vulgaris (Cephalopoda: Octopoda) fisheries along the Northwest

                                                                                                                                                           Downloaded from http://icesjms.oxfordjournals.org/ by guest on October 26, 2015
   Mediterranean and Paratethys basins on the early dispersal                   African Coast. Bulletin of Marine Science, 71: 545 – 553.
   of Euro – Mediterranean freshwater fishes. Ichthyological                Perez-Losada, M., Guerra, A., Carvalho, G. R., Sanjuán, A., and Shaw,
   Exploration of Freshwaters, 1: 167 – 184.                                    P. W. 2002. Extensive population subdivision of the cuttlefish Sepia
Castillo, A. G. S., Alvarez, P., and Garcia-Vazquez, E. 2005. Population        officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula
   structure of Merluccius merluccius along the Iberian Peninsula               indicated by microsatellite DNA variation. Heredity, 89: 417 – 424.
   coast. ICES Journal of Marine Science, 62: 1699– 1704.                   Raymond, M., and Rousset, F. 1995. GENEPOP (version 1.2): popu-
Casu, M., Maltagliati, F., Meloni, M., Casu, D., Cossu, P., Binelli, G.,        lation genetics software for exact tests and ecumenicism. Journal
   Curini-Galleti, M. et al. 2002. Genetic structure of O. vulgaris             of Heredity, 86: 248 – 249.
   (Mollusca, Cephalopoda) from the Mediterranean Sea as revealed           Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution, 43:
   by a microsatellite locus. Italian Journal of Zoology, 69: 295 – 300.        223– 225.
Cavalli-Sforza, L. L., and Edwards, A. W. F. 1967. Phylogenetic analy-      Roper, C. F. E., Sweeney, M. J., and Nauen, C. E. 1984. FAO Species
   sis: models and estimation procedures. Evolution, 32: 550– 570.              Catalogue. 3. Cephalopods of the World. An Annotated and
Chapuis, M. P., and Estoup, A. 2007. Microsatellite null alleles and            Illustrated Catalogue of Species of Interest to Fisheries. FAO
   estimation of population differentiation. Molecular Biology and              Fisheries Synopis, 3(125). 277 pp.
   Evolution, 24: 621 – 631.                                                Ryman, N., Utter, F., and Laikre, L. 1995. Protection of intraspecific
Estoup, A., Largiader, C. R., Perrot, E., and Chourrout, D. 1996. Rapid         biodiversity of exploited fishes. Reviews in Fish Biology and
   one-tube DNA extraction for reliable PCR detection of fish poly-             Fisheries, 5: 417– 446.
   morphic markers and transgenes. Molecular Marine Biology and             Söller, R., Warnke, K., Saint-Paul, U., and Blohm, D. 2000. Sequence
   Biotechnology, 5: 295– 298.                                                  divergence of mitochondrial DNA indicates cryptic biodiversity in
Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version              Octopus vulgaris and supports the taxonomic distinctiveness of
   3.6 (alpha2). Department of Genetics, University of Washington,              Octopus minus (Cephalopoda: Octopodidae). Marine Biology,
   Seattle.                                                                     136: 29 – 35.
Garoia, F., Guarniero, I., Ramsak, A., Ungaro, N., Landi, M.,               Shaw, P., Pierce, J., and Boyle, P. R. 1999. Subtle population structur-
   Piccinetti, C., Mannini, P. et al. 2004. Microsatellite DNA variation        ing within a highly vagile marine invertebrate, the veined squid
   reveals high gene flow and panmictic populations in the Adriatic             Loligo forbesi, demonstrated with microstellite DNA markers.
   shared stocks of the European squid and cuttlefish                           Molecular Ecology, 8: 407– 417.
   (Cephalopoda). Heredity, 93: 166 – 174.                                  Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4:
Greatorex, E. C., Jones, C. S., Murphy, J., Key, L. N., Emery, A. M., and       Molecular Evolutionary Genetics Analysis (MEGA) software
   Boyle, P. R. 2000. Microsatellite markers for investigating popu-            version 4.0. Molecular Biology and Evolution, 24: 1596– 1599.
   lation structure in Octopus vulgaris (Mollusca: Cephalopoda).            Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P.
   Molecular Ecology, 9: 641– 642.                                              2004. MICRO-CHECKER: software for identifying and correcting
Guerra, A. 1992. Mollusca, Cephalopoda. In Fauna Ibérica, 1,                   genotyping errors in microsatellite data. Molecular Ecology Notes,
   pp. 234 – 245. Ed. by M. A. Ramos. Museo Nacional de Ciencias                4: 535– 538.
   Naturales, CSIC, Madrid. 327 pp.                                         Weir, B. S. 1996. Intraspecific differentiation. In Molecular
Guerra, A. T., Cortez, T., and Rocha, F. 1999. Redescription of the             Systematics, 2nd edn, pp. 385 – 403. Ed. by D. M. Hillis, C.
   Changós octopus, Octopus mimus Gould, 1852, from coastal                    Moritz, and B. Mable. Sinauer Ass, Sunderland, MA. 445 pp.
   waters of Chile and Peru (Mollusca, Cephalopoda). Iberus, 17:
   37 – 57.                                                                                                             doi:10.1093/icesjms/fsm178
You can also read