Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...

Page created by Franklin Mcdaniel
 
CONTINUE READING
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
Energy Research at the
     University of Michigan

       Ronald M. Gilgenbach!
     Chair and Chihiro Kikuchi !
        Collegiate Professor!
Nuclear Engineering and Radiological
       Sciences Department!
       University of Michigan!
                          	
  
                          	
  
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
h"p://energy.umich.edu	
  
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
A Unique History
           The	
  University	
  of	
  Michigan	
  Energy	
  Ins5tute	
  builds	
  
           on	
  the	
  legacy	
  of	
  the	
  historic	
  Michigan	
  Memorial	
  
           Phoenix	
  Project	
  (MMPP),	
  a	
  living	
  memorial	
  to	
  
           those	
  members	
  of	
  the	
  U-­‐M	
  community	
  who	
  gave	
  
           their	
  lives	
  in	
  World	
  War	
  II.	
  	
  
	
  
           – Launched in 1948 through the University’s first-ever
             fundraising campaign, MMPP explores the peaceful uses of
             nuclear energy.!
           – In addition to supporting the construction and use of the
             Ford Nuclear Reactor, now decommissioned, MMPP has
             funded studies on the use of nuclear technology in such
             fields as medicine, chemistry, physics, mineralogy,
             archeology, engineering, and law.!
           – MMPP stands as a distinct unit within the Energy Institute
             and highlights the U-M’s rich tradition of leadership in
             energy research.!
       !

	
  
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
Notable projects funded by
Michigan Memorial Phoenix Project

     •   Glaser's Bubble Chamber (Nobel Prize, 1960)

     • Werner's Neutron Interferometry experiment

     • Beierwalter’s I-131 Thyroid Therapy

     • Crane's work in carbon-14 dating (1949)

     • Food Sterilization using Co-60

                                                    	
  	
  

                                                    	
  
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
UMEI Milestones
       2006   2008         2009                   2010                      2011                       2012
1948
Michigan
Memorial
Phoenix
                 Fraunhofer
Project                        U.S. China CERC      UM – SJTU research          First PISET projects     Joint Center for
                 partnership
     Founding of established   Clean Vehicles       collaboration established   awarded                  Energy Storage
     the Energy                Consortium awarded (renewable energy &                                    Research
      Institute                                     biomed)                     Groundbreaking for
                               Center for Solar and                             Phoenix Memorial
                               Thermal Energy       Consortium for Advanced     Lab
                               Conversion awarded Simulation of LWRs

     Founding                  Director: Dennis                                 Director: Johannes       New Director:
     Director of               Assanis                                          Schwank                  Mark Barteau
     MEI: Gary Was

    2013:
      -Completion & Dedication of the Phoenix Memorial Laboratory
      -Launch of the Energy Survey (in partnership with ISR)
      -Battery fabrication and characterization user facility
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
Phoenix Memorial Lab
UMEI’s new space (May                          First floor
2013)
-Reconfigurable, project-based                                       N
space hosting interdisciplinary                                      u
U-M and user work                                                    c
                                                                     l
-$18 million university                                              e
investment
                                                                     a
in energy research
                                                                     r
-10,000 sq. ft. of collaborative
                                                                     R
and administrative space
                                                                     e
                                                      Second floor
                                                                     a
Existing Space
                                                                     c
Basement	
  level	
  	
  is	
  primarily	
                           t
occupied	
  by	
  Nuclear	
                                          o
Engineering	
  Labs	
  &	
  Hot	
  Cells	
                           r
                                                                     B
                                                                     l
                                                                     d
                                                                     g
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
UMEI Mission:
        Prof. Mark Barteau, Director
The Energy Institute’s mission
  To chart pathways to a secure, affordable and sustainable
  energy future.
Measures of Success
  – UMEI will be a pillar of the University’s leadership in
    creating a sustainable world
  – UMEI will increase the impact of U-M in thought
    leadership and as a source of solutions to energy
    and its environmental challenges from the local to the
    global

UMEI is the “front door” to all things Energy at the
              University of Michigan.
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
What We Do, Where We Focus

                             • Clean, Low-Carbon
• Push	
  energy	
             Electricity
  discoveries	
              • Energy Storage
• Grow	
  partnerships	
     • Sustainable
• Shape	
  the	
               Transportation
  conversa;on	
              • Energy Policy,
                               Economics and
                               Societal Impact
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
Research Thrust:
           Carbon-free Electric Power Generation

• UM	
  has	
  significant	
  strengths:	
  
       – Nuclear	
  Engineering,	
  solar	
  energy,	
  wind	
  
• Integrate	
  efforts	
  to	
  establish	
  leading	
  centers	
  
       – Genera5on/storage/distribu5on	
  and	
  integra5on	
  with	
  carbon	
  neutral	
  
         buildings	
  and	
  vehicles	
  
       – Combine	
  the	
  technical	
  effort	
  with	
  policy/economics/	
  social	
  impact	
  

	
  
Energy Research at the University of Michigan - Ronald M. Gilgenbach Chair and Chihiro Kikuchi Collegiate Professor Sciences Department University ...
Research Thrust:
                      Energy Storage and Efficiency

• Energy	
  storage:	
  
       – Improve	
  energy	
  &	
  power	
  density	
  at	
  reduced	
  lifecycle	
  cost	
  
       – Manufacturing	
  technology	
  for	
  energy	
  storage	
  devices	
  
• Unique	
  opportuni5es:	
  
       – Convergence	
  of	
  Bio-­‐Nano-­‐Energy	
  Sciences	
  
       – Strong	
  connec5on	
  to	
  future	
  vehicle	
  R&D	
  and	
  CN	
  Electricity	
  

	
  
Research Thrust:
                 Transportation Systems and Fuels
• UM	
  is	
  at	
  the	
  center	
  of	
  the	
  global	
  automo5ve	
  industry:	
  
       – History	
  of	
  significant	
  research	
  funding	
  and	
  successful	
  collabora5ons	
  
         (GM,	
  Ford,	
  Chrysler,	
  TARDEC,…):	
  Detroit	
  area	
  =	
  “Motor	
  City”	
  
       – Time	
  to	
  revolu5onize	
  the	
  automobile	
  
• Research	
  focus:	
  
       – Vehicle	
  electrifica5on	
  	
  
       – Alterna5ve	
  fuels	
  
       – Vehicle	
  to	
  grid	
  interac5on	
  

	
  
Research Thrust:
    Energy Policy, Economics and Societal Impact
•   Pathway	
  to	
  the	
  implementa5on	
  of	
  
    technological	
  solu5ons	
  is	
  via	
  public	
  policy,	
  
    economics	
  and	
  societal	
  impact,	
  
•   Pursue	
  a	
  comprehensive	
  approach	
  to	
  
    overcoming	
  barriers	
  to	
  the	
  implementa5on	
  
    of	
  technical	
  solu5ons	
  
Energy Institute Faculty

         About our faculty affiliates:
         • 150 U-M faculty from across the
           research and policy spectrum
         • Participate as thought leaders in
           their respective fields and in the
           energy space
         • Work with UMEI on event
           participation, research publicity,
           and student engagement
UMEI Programs

• Partnerships for Innovation in Sustainable Energy
  Technologies (PISET)
• Energy Minor
• Undergraduate Research Opportunities (UROP)
• Clean Energy Venture Challenge (CEVC)
• Michigan Memorial Phoenix Project Seed Grant program
    “… to explore the ways and means by which the
   potentialities of atomic energy may become a beneficent
   influence in the life of man...”
UMEI Internal Partnerships
•   Michigan Mobility Transformation Center (Led by UMTRI)
•   Energy Survey (with ISR)
•   Fracking Integrated Assessment (Led by Graham Institute)
•   Global Challenges proposals:
     - Seed Funding: “REFRESCH: Researching Fresh
       Solutions to the Energy/Water/Food Challenge in
       Resource-Constrained Environments”
     - Team Development proposal: “Beyond Carbon Neutral:
       New Strategies for Mitigating CO2 Emissions from the
       Ongoing Use of Liquid Fuels”
UMEI External Partnerships
• US-China Clean Energy Research Center (CERC)
• Joint Center for Energy Storage Research (JCESR)
• Consortium for Advanced Simulation of Light Water (Nuclear)
  Reactors (CASL)
  - DoE Energy Hub led by ORNL
• Center for Solar and Thermal Energy Conversion (CSTEC)
  - DOE Energy Frontier Research Center
Nuclear Energy Innovation Hub (CASL)
 •   DoE	
  Energy-­‐hub	
  on	
  Modeling	
  &	
  Simula5on	
  (M&S)	
  of	
  Light	
  Water	
  Reactors,	
  
     funded	
  by	
  the	
  U.S.	
  Department	
  of	
  Energy	
  
 •   Develop	
  an	
  advanced	
  Virtual	
  Nuclear	
  Reactor	
  capability	
  to	
  address	
  the	
  key	
  
     issues	
  of	
  cost,	
  nuclear	
  waste	
  disposal,	
  and	
  licensing.	
  
 •   UM	
  leads	
  the	
  Radia5on	
  Transport	
  and	
  Numerical	
  Methods	
  Thrust	
  
     (es5mated	
  funding	
  ~	
  $12M	
  for	
  five	
  years)	
  
 •   Overall	
  R&D	
  effort	
  is	
  large	
  ($125M),	
  highly	
  collabora5ve,	
  mul5disciplinary,	
  
     mission-­‐oriented,	
  high	
  priority	
  
CASL Goal: Can an advanced “Virtual Reactor” be developed and applied
             to proactively address critical performance
                      goals for nuclear power?

 1 Reduce capital         2 Reduce nuclear waste   3 Enhance nuclear safety
   and operating costs      volume generated         by enabling high-fidelity
   per unit energy by:      by enabling higher       predictive capability
   • Power uprates          fuel burnups             for component and
   • Lifetime extension                              system performance
                                                     from beginning
                                                     of life through failure
CRUD build-up on PWR fuel rods
CRUD build-up on nuclear fuel rods has been
identified among the challenge problems currently
limiting reactor fuel performance

                                                                    Neutron	
                            CFD	
  
                                                                   transport	
  

                                                                                   3D	
  Chemistry	
  
        Heavy crud loading in a PWR
“Striping” of crud deposits are caused by:                            CRUD = Chalk River
Ø Spacer-induced flow swirls                                         Unidentified Deposits;
     - affect heat transfer and thus cladding temperature
     - affect crud erosion (through shear stresses)
                                                                      mostly Nickel ferrite NiFe2O4,
                                                                      nickel oxide, and nickel
Ø Spatial variations of power distribution
Ø Interplay with local chemistry                                     metal with other nickel-iron-
                                                                      chrome crystals.

Need of multi-physics computational capabilities involving:
                   3D thermal-hydraulics
                       3D neutronics
                       3D chemistry                                V. Petrov, D. Walter, A. Manera (UM)
     19
                                                                   B. Kendrick (LANL)
CFD Results – a few remarks
                                                                                  Cladding	
  temperature,	
   pin	
   #10                                                                                Cladding	
  temperature,	
   pin	
   #13
                                                                 640                                                       Cladd_T_before_vanes                                          640                                                     Cladd_T_before_vanes
                                                                                                                           Cladd_T_between_vanes                                                                                                 Cladd_T_between_vanes
                                                                 635                                                       Cladd_T_after_vanes                                           635                                                     Cladd_T_after_vanes

                         Cladding	
  temperature	
  [K]

                                                                                                                                                   Cladding	
  temperature	
  [K]
                                                                 630                                                                                                                     630

                                                                 625                                                                                                                     625

                                                                 620                                                                                                                     620

                                                                 615                                                                                                                     615

                                                                 610                                                                                                                     610
                                                                        0   50       100        150          200            250    300      350                                                 0    50      100        150          200            250    300         350
                                                                                            Azimuthal	
  position,	
  [deg]                                                                                         Azimuthal	
  position,	
  [deg]

                                                                                 Cladding	
  temperature,	
  
                                                                            Turbulent kinetic energy pin	
   #10                                                                                         Cladding	
  temperature,	
  
                                                                                                                                                                                                    Turbulent kinetic energy pin	
   #13
                                                                  0.5                                                                                                                     0.5

                                                                 0.45                                                                                                                    0.45

                                                                                                                                                   Turbulent	
  kinetic	
  energy[J/g]
                           Turbulent	
  kinetic	
  energy[J/g]

                                                                  0.4                                                                                                                     0.4

                                                                 0.35                                                                                                                    0.35

13     14   15   16                                               0.3                                                                                                                     0.3

                                                                 0.25                                                                                                                    0.25
09   10     11   12                                                                                                                                                                                                                           Cladd_T_before_vanes
                                                                  0.2                                                      Cladd_T_before_vanes                                           0.2
                                                                                                                           Cladd_T_between_vanes                                                                                              Cladd_T_between_vanes
                                                                 0.15                                                                                                                    0.15
05   06     07   08                                                                                                        Cladd_T_after_vanes                                                                                                Cladd_T_after_vanes
                                                                  0.1                                                                                                                     0.1
                                                                        0    50       100       150          200            250    300      350                                                 0    50       100       150          200            250    300         350
01     02   03   04
                                                                                            Azimuthal	
  position,	
  [deg]                                                                                         Azimuthal	
  position,	
  [deg]

     § 	
  Phase	
  shid	
  in	
  cladding	
  Temperature	
  distribu5on	
  along	
  eleva5on	
  (swirl)	
  
     § 	
  Maximum	
  TKE	
  (max	
  crud	
  erosion)	
  at	
  points	
  with	
  lowest	
  T	
  (lowest	
  crud	
  deposits)	
  
     § 	
  Hofest	
  “hot	
  spot”	
  does	
  not	
  necessarily	
  occur	
  on	
  pin	
  with	
  highest	
  power	
  (local	
  effects)	
  
     	
  
Optical & (60Co) Gamma Ray Images of
                Nuclear Reactors!

Distribution of isotopes can be visualized instantly
Measurements at Reactor
                  Dryer Separator Pit!

                                                                 Fe-59!
                                                                 Co-60
                                                                 image!
                                                                 image

Distributions of different isotopes can be visualized for safety inspection.
Detection of changes of isotope distributions over time can be
very sensitive to detect fuel leaks or contaminations
Reactor Optical & Gamma Images

        Gilgenbach 2013
UM College of Engineering Class at Xiamen University
                 in China (3rd Year)
visiting Sanmen Nuclear Power Plant Construction Site
Plasma Science and Fusion Technology!

• Top analytical, computational & experimental
  faculty!
• UM High Energy Density plasmas (HEDP): Highest
  power-density laser in the world (CUOS)!
• UM HEDP: Latest MA, 0.1 TW pulsed-power and
  microwave technology !
• HEDP Research is mostly relevant to Sandia,
  LANL, AFRL, NRL, LLNL!
• Plasma applications to space propulsion (NASA)
  and environmental needs (water purification)!
Lau & Gilgenbach: Fusion Group with
MA-Linear Transformer Driver Experiment!
2.24	
  mm	
  (1.13	
  cm/µs)	
  

1.46	
  mm	
  (0.73	
  cm/µs)	
  
Michigan Memorial Phoenix Project Grants 2013!

ü“Making nuclear power plants safer”, Yugo Ashida, NERS!

ü“Nuclear Activation for a better understanding of energy
storage mechanisms” (in Supercapacitors)”, Jason Siegel,
Mechanical Engineering, Levi Thompson, Chemical Eng.!

ü“Attacking pain: Exploring new receptors for painkillers”,
Peter Scott, Radiology, James Woods, Pharmacology, Xia
Shao, Radiology!

ü“Measuring a nuclear material inside a shielded container”,
Shaun Clarke, NERS!
UMEI External Partnerships
•   UM-SJTU (Shanghai Jiao Tong University) Collaboration: projects by
    teams of co-investigators from SJTU and from U-M, focusing on
    Renewable Energy and biomedical technologies
    o   Solar Energy & Net Zero Energy Efficient Buildings
    o   Li-Air Batteries
    o   High Efficiency Hybrid Solar Cells
    o   Lithium-Sulfur Batteries
    o   Sustainable fuels for Transportation
    o   Li-ion batteries
    o   Engineering the Right Fuel for Sustainable Transportation
    o   Clean-vehicle modeling for China

• UM-BGU (Ben-Gurion University) Collaboration Program in Energy: focus
  areas are:
        o Photovoltaics and solar technology
        o Liquid fuels and engine combustion
        o Thermoelectricity, materials and devices
UMEI Battery Research
• Joint	
  Center	
  for	
  Energy	
  Storage	
  Research	
  
  (JCESR)	
  
• CERC	
  Advanced	
  Baferies	
  and	
  Vehicle	
  
  Electrifica5on	
  thrust	
  programs	
  	
  
• ARC	
  Electrical	
  Energy	
  Storage	
  program	
  
• NSF-­‐Sustainable	
  Energy	
  Pathways	
  Award	
  for	
  
  non-­‐aqueous	
  flow	
  bafery	
  research	
  	
  
• Numerous	
  individual	
  grants	
  and	
  projects	
  
UMEI Faculty and JCESR Projects
• Chemical	
  Transforma;ons	
  
    – Deposi5on/Dissolu5on	
  Theory:	
  Katsuyo	
  Thornton	
  
    – New	
  Electrolytes	
  Design	
  for	
  Enhanced	
  Stability	
  and	
  Peroxide	
  Growth	
  
      Control:	
  Don	
  Siegel	
  
    – Metal	
  Anode	
  Modifica5on	
  –	
  Deposi5on/Dissolu5on	
  Dynamics:	
  
      Emmanuelle	
  Marquis	
  
•     Non-­‐aqueous	
  Redox	
  Flow	
  
    – 	
  Solu5on	
  Phase	
  Redox	
  Molecules:	
  Melanie	
  Sanford,	
  Levi	
  Thompson	
  
    – 	
  High	
  Concentra5on	
  Solu5on	
  Structure:	
  Levi	
  Thompson	
  
•     Cell	
  Design	
  and	
  Prototyping	
  
    – 	
  Electrode	
  Development:	
  Johannes	
  Schwank	
  
U.S.–CHINA CLEAN
ENERGY RESEARCH CENTER            Research	
  Thrust	
  	
  
www.cerc-cvc.research.umich.edu
                                      Areas	
  

     1. Advanced                                          4. Lightweight
     Batteries and                                        Structures
     Energy
     Conversion

    2. Advanced                                            5. Vehicle-Grid
    Biofuels, Clean                                        Integration
    Combustion and
    APU

                                                          6. Energy
                                                          Systems
      3. Vehicle                                          Analysis,
      Electrification                                     Technology
                                                          Roadmaps and
                                                          Policies    32
U.S.–CHINA CLEAN
ENERGY RESEARCH CENTER                    Academic	
  &	
  Na5onal	
  	
  
www.cerc-cvc.research.umich.edu
                                             Lab	
  Partners	
  

                           U.S.	
  	
  

                            China	
  

                                                                             33
U.S.–CHINA CLEAN
ENERGY RESEARCH CENTER
                                                 Industrial	
  Partners	
  
www.cerc-cvc.research.umich.edu

                                  U.S.	
  	
  

                                  China	
  

                                                                              34
Advanced	
  Ba"eries	
  and	
  Energy	
  
            Clean	
  Vehicles	
  Consor5um	
  
                                                      Conversion:	
  Goals	
  

• Degrada;on:	
  Combine	
  modeling	
  and	
  advanced	
  
  characteriza5on	
  to	
  understand	
  degrada5on	
  
  mechanisms	
  in	
  Li-­‐ion	
  baferies.	
  
• Modeling,	
  Controls,	
  and	
  Implementa;on:	
  To	
  
  extend	
  bafery	
  life,	
  develop	
  bafery	
  management	
  
  systems	
  with	
  on-­‐board	
  balancing	
  technologies.	
  
  Review	
  protocols	
  for	
  bafery	
  tes5ng	
  &	
  safety.	
  
  Explore	
  pathways	
  for	
  reuse	
  &	
  recycling	
  of	
  baferies.	
  
                                                                                                                   Mn2+
                                                                                                                              microbiological	
  	
  
                                                                                                                              sulfate	
  reduce	
  	
  

• New	
  Chemistries:	
  Advance	
  Li-­‐air	
  and	
  Li-­‐sulfur	
  
                                                                                                                              reac5on
                                                                                          bioleac
                                                                                          hing

                                                                                 air
                                                                                                                    Co4+

  chemistries	
  towards	
  commercial	
  viability	
  by	
  
                                                                                                                   Ni2+ V2+
                                                                                                                                                          Co
                                                                                                                                                          Ni V
                                                                                                                              microbiological	
  	
  

                                                                                                              	
              metal	
  reduce	
  	
  
                                                                                                                              reac5on	
  

  revealing	
  limi5ng	
  phenomena	
  and	
  developing	
  
                                                                                        Bioleaching	
  bacteria

                                                                                         Electrode	
  materials
                                                                                                                                                          SnMn

  materials/architectures	
  that	
  overcome	
  these	
  
  obstacles.	
  

	
  
Need meets Funding Opportunity: Battery
       Fabrication and Characterization User Facility
• Goals:	
  
        – Provide	
  a	
  user	
  facility	
  for	
  interested	
  internal	
  and	
  external	
  
             customers	
  in	
  the	
  State	
  of	
  Michigan	
  and	
  beyond	
  
        – Transla5onal	
  R&D	
  facility	
  to	
  bridge	
  gap	
  between	
  lab-­‐scale	
  
             experimenta5on	
  and	
  full-­‐scale	
  bafery	
  pack	
  performance	
  
        	
  
• Facility	
  will	
  provide:	
  
        –   Equipment	
  that	
  reflects	
  bafery	
  produc5on	
  process	
  
        –   Small	
  and	
  medium	
  sized	
  pouch	
  cells	
  
        –   Development	
  of	
  in	
  situ	
  characteriza5on	
  tools	
  
        –   Range	
  of	
  bafery	
  technologies	
  and	
  applica5ons	
  
	
  
CENTER FOR SOLAR AND THERMAL ENERGY CONVERSION
      Peter F. Green (University of Michigan)
Design and synthesize new materials for high
efficiency photovoltaic (PV) and thermoelectric
(TE) devices, predicated on new fundamental
insights into equilibrium and non-equilibrium
processes, including quantum phenomena, that
occur in materials over various spatial and
temporal scales.

                   RESEARCH OBJECTIVES AND DIRECTIONS
Research in CSTEC falls in three synergistic and collaborative thrusts, under a
unifying concept: structure and transport at the nanoscale.
Thrust 1: exploit unique quantum effects at the nanoscale to achieve high
efficiency solar energy conversion. Thrust 2: to understand and to exploit
fundamental mechanisms and processes to achieve high figures of merit in
thermoelectric (inorganic, hybrid or molecular) materials. Thrust 3: investigate the
molecular and structural origins of energy conversion phenomena in organic and
hybrid material systems.
New NERS Laboratories funded by a
 $5M Gift from Dr. J. Robert Beyster
http://energy.umich.edu
You can also read