Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche Salvatore Romano1, Silvia Becagli2, Franco Lucarelli3, Gennaro Rispoli1, Maria Rita Perrone1 1 Dipartimento di Matematica e Fisica, Università del Salento, Lecce, 73100 2 Dipartimento di Chimica, Università di Firenze, Sesto Fiorentino (FI), 50019 3 Dipartimento di Fisica, Università di Firenze, Sesto Fiorentino (FI), 50019
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Introduction BIOAEROSOL BIOAEROSOL number concentration ∼ 104 m−3 mass concentration ∼ 1 μg m−3 Fröhlich-Nowoisky et al. (2016) Atmos. Res. Bioaerosol represents about 10% of the total aerosol mass Wei et al. (2015) Sci. Bull. AEROSOL Cao et al. (2014) Environ. Sci. Technol. Size Distribution (µm) IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (2/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Outline and Main Goals • The structure of the airborne bacterial community was characterized in PM10 samples to investigate its relationships with the chemical composition in a Central Mediterranean site affected by aerosol particles of different type and origin. • We analyzed both winter (January-March 2018) and spring (May-June 2018) PM10 samples to study the seasonal variations of the relationships between the bacterial community structure and the chemical elements. • The 16S rRNA gene metabarcoding approach was used for the DNA extraction and the PM10 sample bacterial structure characterization (both at the phylum and at the genus taxonomic level). PM10 samples were chemically characterized for more than 30 species, including OC, EC, ions, and metals. • The PCA (Principal Component Analysis) and the RDA (Redundancy Discriminant Analysis) were applied to the bacterial phylum/genus relative abundances and the chemical species mass concentrations, allowing identifying the main relations among the investigated parameters. IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (3/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Monitoring Site MARINE AEROSOL ANTHROPOGENIC AEROSOL MARINE DESERT AEROSOL DUST DESERT DUST Aerosol & Climate Laboratory Mathematics and Physics Department University of Salento (Lecce, Italy) from Perrone et al. (2015) Environ. Sci. Pollut. Res. IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (4/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Instrumentation and Methodology (Airborne Bacterial Community Characterization) 10 winter Hydra Dual Sampler PM10 samples FAI Instruments (January-March 2018) 10 spring PM Sampler PM10 samples Gravimetric Method (May-June 2018) PM10 Sample 1 IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (5/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Instrumentation and Methodology (Chemical Species and Oxidative Potential) ION Mass Concentration Metal Mass Concentration ION Chromatography Varian 720-ES Inductively Gilson 222-XL auto sampler Coupled Plasma Atomic (University of Florence) Emission Spectrometer (University of Florence) OC and EC Mass Concentration Oxidative Potential Sunset Carbon DTT and AA Analyzer Instrument depletion rate methods (University of Salento) (University of Ferrara) PM10 Sample 2 IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (6/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Characterization of Airborne Bacterial Phyla in PM10 Samples geographical location and meteorological conditions of the monitoring site effects on the airborne bacteria dispersion variability of the bacterial community composition Cyanobacteria (18.80%) Actinobacteria (11.43%) Proteobacteria (45.56%) winter spring from Romano S. et al. (2019) «Airborne bacteria in the Central Mediterranean: Structure and role of meteorology and air mass transport» Sci. Total Environ. 697 (134020) IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (7/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Characterization of Airborne Bacterial Genera in PM10 Samples We found a different structure of the airborne bacterial community at the phylum and at the genus taxonomic level. Pseudomonas (9.23%) winter spring Calothrix (16.84%) Bacillus (4.27%) from Romano S. et al. (2019) «Airborne bacteria in the Central Mediterranean: Structure and role of meteorology and air mass transport» Sci. Total Environ. 697 (134020) IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (8/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Role of the Meteorology and the Long-Range Transport Meteorological Parameters, Bacterial Phyla Relative Abundances PCA Input Parameters Heavy Rain Samples (S5, S9, S11, S13) Continental Samples (S1, S2, S10) Desert Dust Samples (S3, S6, S12) Marine Samples (S4, S7, S8) Late Spring Samples (S14, S15, S16, S17, S18, S19, S20) from Romano S. et al. (2019) Sci. Total Environ. 697 (134020) IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (9/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Redundancy Discriminant Analysis main pollution sources identified by Positive Matrix Factorization (PMF) (black arrows): mixed anthropogenic MAN, chemical species mass concentrations (red arrows) = predictive variables sulphate SUL, heavy oils – secondary marine OSM, soil dust bacterial PHYLA relative abundances (green arrows) = response variables SDU, reacted dust RDU, and sea salt SES 0.5 SDU 0.25 Mn (a) S3 0.4 Ca Fe Al (b) S13 Rb Ba Ti Si winter 0.2 spring SDU SUL V RDU Sr 0.3 As Ti Si Al OSM Verr - Gemm SES PNi Canonical Axis II (18.09 %) SO2- NO 0.15 Fe RDU 4 3 2+ Mn Canonical Axis II (21.79 %) Cr Mg - 0.2 Pb Cl Zr K Na+ K OSM Sr S Br 0.1 SUL Pb Ni Mo S6 Plan Zn Tene Mg2+ 0.1 Zn Cu Zr Ther Tene Cu S19 OC V Cd Firm Acti OC S2 S10 Chlo Br S P NH+4 Se Bact 0.05 + 2- RbS16 MAN NH4 SO4 Cyan Acti NO-3 EC Ba EC Arma Ca 0 Cyan Se Prot Nitr S18 Prot Cr MAN MS- S4 0 Cd Acid S1 S15 Firm Mo -0.1 S11 Bact S7 As Chla Ther MS- S8 S14 Na+ S9 S20 S17 -0.05 -0.2 In spring, most of the bacterial Cl- SES Bacterial phylum arrows were spread phyla were associated with over a wider area of the canonical -0.1 -0.3 S5 chemical species characterizing the S12 axis plane in winter than in spring. OSM, RDU, and SES sources. -0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.4 -0.2 0 0.2 0.4 0.6 Canonical Axis I (63.11 %) Canonical Axis I (74.46 %) The chemical species arrows in the RDA triplot were on average spread in the canonical axis plane over a wider angle in spring than in winter, suggesting that the correlation coefficients among chemical species likely decreased in spring. The spring-summer air mass aging, which favored the mixing of particles of different type/source, likely contributed to this result. from Romano S. et al. (2020) Sci. Total Environ. 730, 138899 IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (10/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” DTT = dithiothreitol assay Redundancy Discriminant Analysis AA = ascorbic acid assay bacterial PHYLA relative abundances (red arrows) = predictive variables OPm = mass-normalized oxidative potential oxidative potential (green arrows) = response variables OPV Analysis = volume-normalized oxidative potential Redundancy Analysis (Phyla and Oxidative Potential, WINTER) Redundancy (Phyla and Oxidative Potential, SPRING) 0.3 OP-AA and OP-DTT values We found that in winter OPm was associated with OPvAA OPvAA present similar associations with 0.3 0.25 Cyanobacteria (generally found in aquatic the analyzed bacterial phyla habitat), the “marine samples” S4 and S8 and the “heavy rain samples” S5 and S9. OPvDTT 0.2 0.2 Canonical Axis II (23.13 %) Canonical Axis II (23.70 %) S15 0.15 winter spring Tene Acti S2 OPvDTT 0.1 S14 S13 Verr Ther 0.1 S3 ChloBact Verr Plan Acti Gemm Firm Gemm Nitr Chla 0 0.05 S8 TherChlo Plan S20 S17 Cyan S16 OPmDTT Arma Prot S11 S6 Tene Firm S19 S7 S10 Bact 0 Cyan -0.1 S18 Acid -0.05 OPmDTT S12 Prot S1 -0.2 In spring, OPm values were S4 strictly related to Firmicutes -0.1 OPmAA S5 S9 and the desert dust sample S12. -0.3 OPmAA -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 Canonical Axis I (67.45 %) Canonical Axis I (70.91 %) OPV (extensive parameter) and OPm (intensive parameter) arrows are located in a different region of the RDA triplot, proving their different features in relation to the analyzed bacterial phyla IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (11/12)
Romano S. et al. “Comunità Batterica e Composizione Chimica in Campioni di PM10: Nuovi Approcci di Analisi Integrando Differenti Tecniche” Main Results Proteobacteria (46%), Cyanobacteria (19%) and Actinobacteria (11%) were the most abundant airborne bacterial phyla identified in winter and spring PM10 samples collected in Lecce, a Central Mediterranean monitoring site. “Continental”, “marine”, “heavy rain”, “desert dust”, and “late spring” clusters were identified by PCA taking into account the long-range transport, the meteorological parameters, and the bacterial phyla relative abundances. The Redundancy Discriminant Analysis technique highlighted that most of the relationships among bacterial phyla/genera and chemical species are highly season-dependent. The oxidative potential values obtained by AA and DTT assays presented similar associations with the analyzed bacterial phyla and chemical species, as proved by RDA triplots. The analyses reported in this work have shown that the PM bacterial structure must be accounted to properly estimate the toxicity of PM10 samples and to assess the chemical species role. IX Convegno Nazionale sul Particolato Atmosferico (Lecce, 14-16 Ottobre 2020) (12/12)
Grazie per l’attenzione!!! salvatore.romano@unisalento.it
You can also read