CAA PAPER 2004/10 Flight Crew Reliance on Automation - www.caa.co.uk - Safety Regulation Group
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Safety Regulation Group CAA PAPER 2004/10 Flight Crew Reliance on Automation www.caa.co.uk
Safety Regulation Group CAA PAPER 2004/10 Flight Crew Reliance on Automation Written by Simon Wood, Cranfield University December 2004
CAA Paper 2004/10 Flight Crew Reliance on Automation © Civil Aviation Authority 2004 ISBN 0 86039 998 2 Published December 2004 Enquiries regarding the content of this publication should be addressed to: Research Management Department, Safety Regulation Group, Civil Aviation Authority, Aviation House, Gatwick Airport South, West Sussex, RH6 0YR. The latest version of this document is available in electronic format at www.caa.co.uk, where you may also register for e-mail notification of amendments. Printed copies and amendment services are available from: Documedia Solutions Ltd., 37 Windsor Street, Cheltenham, Glos., GL52 2DG.
CAA Paper 2004/10 Flight Crew Reliance on Automation List of Effective Pages Chapter Page Date Chapter Page Date iii December 2004 iv December 2004 v December 2004 vi December 2004 vii December 2004 Chapter 1 1 December 2004 Chapter 1 2 December 2004 Chapter 1 3 December 2004 Chapter 1 4 December 2004 Chapter 1 5 December 2004 Chapter 2 1 December 2004 Chapter 3 1 December 2004 Chapter 3 2 December 2004 Chapter 3 3 December 2004 Chapter 3 4 December 2004 Chapter 3 5 December 2004 Chapter 3 6 December 2004 Chapter 3 7 December 2004 Chapter 4 1 December 2004 Chapter 4 2 December 2004 Chapter 4 3 December 2004 Chapter 4 4 December 2004 References 1 December 2004 References 2 December 2004 References 3 December 2004 Annex A 1 December 2004 Annex A 2 December 2004 Annex A 3 December 2004 Annex A 4 December 2004 Annex A 5 December 2004 Annex A 6 December 2004 Annex A 7 December 2004 Annex A 8 December 2004 Annex A 9 December 2004 Annex A 10 December 2004 Annex A 11 December 2004 Annex A 12 December 2004 Annex A 13 December 2004 Annex A 14 December 2004 Glossary 1 December 2004 Glossary 2 December 2004 December 2004 Page iii
CAA Paper 2004/10 Flight Crew Reliance on Automation Contents List of Effective Pages iii Executive Summary v Preface vi Background vi Introduction vi Chapter 1 Review of Literature Introduction 1 Review of the Impact of Automation 1 Previous Studies 3 Training Regulations and Requirements 5 Chapter 2 Review of Data Review of Incident Data 1 Chapter 3 Discussion General 1 Automation failures 2 Regulations for Training Requirements 4 Chapter 4 Conclusions and Recommendations Dependency on Automatics Leads Crews to Accept what the Aircraft is doing without Proper Monitoring 1 Crews of Highly Automated Aircraft Lose Manual Flying Skills 2 Inappropriate Response to Failures 2 CRM Requirements 3 References Annex A Literature Review The Role of Automation 1 Recognition of and Reaction to Failure 5 Previous Studies 9 FAA HF Team Report 1996 10 Glossary December 2004 Page iv
CAA Paper 2004/10 Flight Crew Reliance on Automation Executive Summary Modern large transport aircraft have an increasing amount of automation and crews are placing greater reliance on this automation. Consequently, there is a risk that flight crew no longer have the necessary skills to react appropriately to either failures in automation, programming errors or a loss of situational awareness. Dependence on automatics could lead to crews accepting what the aircraft was doing without proper monitoring. Crews of highly automated aircraft might lose their manual flying skills, and there is a risk of crews responding inappropriately to failures. This preliminary report is intended to provide clarification of areas of concern. A detailed literature search was made to understand the problems identified by previous studies into flight deck automation. In parallel a review of relevant incidents occurring on major aircraft types during 2002 and 2003 recorded in the Mandatory Occurrence Report (MOR) database was conducted. Finally, interviews were held with personnel from the following areas: airline training departments (short and long haul), Type Rating Training Organisations, CAA Personal Licensing Department, CAA Flight Operations Inspectorate, and Crew Resource Management/Human Factors (CRM/HF) specialists. Further work would be needed to refine the database search, conduct a survey with line pilots and discuss these issues with the aircraft manufacturers and equipment vendors. The research indicated that there was much evidence to support the concern that crews were becoming dependent on flight deck automation. Furthermore, the new human task of system monitoring was made worse by the high reliability of the automation itself. Little research exists to provide a structured basis for determination of whether crews of highly automated aircraft might lose their manual flying skills. However, anecdotal evidence elicited during interviews and a brief mention in the European Collaboration on Transition Training Research for Increased Safety (ECOTTRIS) study indicates that this is a concern amongst practitioners. Finally, several MOR incidents revealed that crews do respond inappropriately having made an incorrect diagnosis of their situation in which the automation fails. For example, disconnecting the autopilot following an overspeed in turbulence then resulted in level busts. If pilots had a better understanding of the automation then it is likely that the need for manual flying could have been avoided and thus the subsequent level bust. During the course of this research two more fundamental observations were made: • First, pilots lack the right type of knowledge to deal with control of the flight path using automation in normal and non-normal situations. This may be due to operators making an incorrect interpretation of existing requirements and/or a lack of emphasis within the current requirements to highlight the particular challenges of the use of automation for flight path control. • Second, there appears to be a loop-hole in the introduction of the requirements for CRM training. This has resulted in many of the training personnel and managers responsible for the ethos and content of training programmes not fully understanding the significance of the cognitive aspects of human performance limitations. December 2004 Page v
CAA Paper 2004/10 Flight Crew Reliance on Automation Preface 1 Background 1.1 Risk Identification The CAA Flight Operations Department, research literature and a number of international teams involving regulatory authorities and industry have identified reliance on aircraft automatics as an area of potential risk. This is documented in numerous research publications and international regulatory authority reports such as the FAA led Human Factors Task Team Report (1996) and a group within the JAA led Joint Safety Strategy Initiative (JSSI) known as the Future Aviation Safety Team (FAST). The latter focused upon predictive techniques to identify new, emergent or foreseeable future risks to public transport operations. 1.2 Issues Highlighted for Investigation by CAA 1.2.1 There is an increasing amount of automation in aircraft and greater reliance on this automation by the crew. Consequently, there is a risk that flight crew no longer have the necessary skills to react appropriately to either failures in automation, programming errors or a loss of situational awareness. The CAA requested investigation of the following areas: • Firstly, dependence on automatics could lead to crews accepting what the aircraft was doing without proper monitoring. The risk is that if the automatics malfunctioned, or perhaps more likely the Flight Management System (FMS) was wrongly programmed, the crew would not realise the problem until too late. • Secondly, crews of highly automated aircraft might lose their manual flying skills. It requires a positive intervention from the crew to keep in practice at some manoeuvres and it becomes all too easy to let the aircraft get on with it. The more the pilot becomes out of practice the less inclined he becomes to disconnect the autopilot and fly the aircraft himself. The only requirement for manual flying skills to be tested is during an engine-out ILS, go-around and landing annually during the Licence Proficiency Check. Document 24, Guidance to Examiners, now requires the autopilot to be disconnected prior to the selection of flap and becoming established on the localiser. • Thirdly, there is a risk of crews responding inappropriately having made an incorrect diagnosis of their situation. This in turn could arise when systems are over-complicated with too many variables to be easily assimilated. There is a risk that with insufficient depth of training, crews would be unable to interpret accurately all the eventualities that might be presented. 2 Introduction 2.1 Scope The issues highlighted for investigation by CAA cover a large area and it was necessary to define exactly what was and what was not included in the study (Wood, 2004). As a result the study was restricted to the consideration of automation of the task of control of the flight path using an autopilot and a Flight Management System on a fixed-wing 'glass-cockpit' commercial aircraft. A taxonomy of failures was presented that was limited to four classes: December 2004 Page vi
CAA Paper 2004/10 Flight Crew Reliance on Automation • Automation system failure • Programming errors • Organisation errors • Design errors 2.2 Methodology 2.2.1 A detailed literature search was made to understand the problems identified by previous studies into flight deck automation. In parallel a review of relevant incidents recorded in the MOR and CHIRP databases was made. The search parameters were: Airbus, Boeing, Embraer, FMS, autopilot, automation/automatic problems; 1st January 2002 to 31st December 2003. Interviews with personnel from the following areas: airline training departments (short and long haul), Type Rating Training Organisations, CAA Personal Licensing Department, CAA Flight Operations Inspectorate, and CRM/HF specialists. 2.2.2 Further work has still to be done to refine the database search, conduct a survey with line pilots and discuss these issues with the aircraft manufacturers and equipment vendors. Additionally, the findings of this interim report will be discussed with contemporary researchers working for JSSI. 2.3 Layout of this Preliminary report 2.3.1 The report is divided into four Chapters. Chapter One presents a review of the relevant research literature. The impact of automation on modern aircraft is presented first, followed by a synopsis of previous studies in this area. Chapter Two covers the data that was reviewed. Chapter Three presents a discussion of the findings and Chapter Four presents the conclusions and recommendations. 2.3.2 It must be remembered that this report summarises a brief, preliminary study of the issues. Delays in receiving appropriate incident data has meant that there are few analytical findings presented. December 2004 Page vii
CAA Paper 2004/10 Flight Crew Reliance on Automation Chapter 1 Review of Literature 1 Introduction 1.1 Given that the task facing today's pilots has changed, have the regulatory requirements for training and the ensuing standards also changed appropriately to meet such a change? Furthermore, as a result of such training, do the pilots have the necessary skills to react appropriately to either failures in automation, programming errors or a loss of situational awareness? 1.2 Equally, the review of modern aircraft automation issues must acknowledge the continual efforts that are being made to reduce error and mitigate the effects of error. Training programmes and material have not stood still over the last 30 years and the general familiarity with automated systems has changed as well. It is with this point firmly in mind that the conclusions of several studies, ranging over a period of 10-15 years have been presented. It should also be understood that we are not dealing with one 'subject'. The 'pilot' in the cockpit is a multi-dimensional subject, for example: status (Captain or First Officer), age (18 – 60 or even 65), experience (200 – 10,000 hrs), or diverse nationality from any JAA member state. 1.3 The following presents a synopsis of the literature review that has been conducted. A more full account is presented at Annex A. 2 Review of the Impact of Automation 2.1 Introduction of Automation to the Flight Deck We currently have flight deck automation systems that change the task, re-distribute workload for the crew, and present situations that induce an error. The change in role from active, manual control to one of system management has left pilots less proficient in manual skills but still required, on occasions, to take control in time critical situations. The architecture of flight deck automation is based on rationalistic principles that do not readily align with the mental models pilots have for the manual flying task. Pilots have adapted or bridged this gap by adopting 'work-arounds'. The way forward is for the evolution of current designs rather than revolution; however, we still have a problem of mitigating the human-machine problems of extant system designs. 2.2 Automation Dependency - Complacency 2.2.1 Complacency in the automated flight deck represents an important issue. Pilots may become complacent in highly reliable automated environments where the role has become supervisory and lacks practice in direct control. Researchers have reported that when subjects performed multiple flight related tasks simultaneously, with one of the tasks being automated, the consistency and reliability of the automation affected their ability to monitor for automation failure. Detection of automation failures was poor under constant-reliability automation, even following a catastrophic failure. However, monitoring was efficient under variable-reliability automation. These effects do not significantly alter following training. 2.2.2 A further extension of this issue is that the automation need not necessarily 'fail' to cause a problem of cognition for the pilot. The Bangalore crash involving an Air India A320 is a case in point. The system did not fail per se, but it did not behave the way the crew expected it to behave. By the time their effective monitoring alerted them December 2004 Chapter 1 Page 1
CAA Paper 2004/10 Flight Crew Reliance on Automation to the problem there was insufficient time to intervene and prevent the impact with the ground. 2.3 Automation Bias 2.3.1 The availability of automation and automated decision aids encourages pilots to adopt a natural tendency to follow the choice of least cognitive effort. When faced with making decisions pilots will rely on these automated aids as a replacement for vigilance, and actively seeking information and processing. This is termed automation bias. Studies have reported that pilots committed errors on 55% of occasions when the automation presented incorrect information in the presence of correct information to cross-check and detect the automation anomalies. Training crews on automation bias or to verify correct automated functioning had no effect on automation-related omission errors, and neither did display prompts that reminded crews to verify correct functioning. However, there was evidence that pilots did perform better depending on the flight critical nature of the event. For example, they were more likely to notice an altitude capture error rather than a radio call error in the cruise. These studies also confirmed the tendency towards over-reliance on reliable automation where pilots were reluctant to correct automation errors despite recognising and acknowledging a discrepancy between what they were expecting and what the automation actually did. Furthermore, an error of commission was committed by nineteen out of twenty experienced crews who followed a false fire indication and shut down an engine despite the lack of any other indications of fire. Additionally, results of questionnaires indicated that these same pilots considered that an automated warning message alone would be insufficient for them to ensure that the fire was real. Pilots believed that they saw information that verified the automated cue; this aspect has profound relevance for the analysis of human factors following incident and accident reports. 2.3.2 Interestingly, after the incorrect decision had been made to shutdown the engine, crews immediately adopted the rule-based behaviour for the shutdown procedure i.e. they then verified that they were shutting down the correct engine. The results of such studies indicate that pilots fail to take into account all of the relevant information that is present in an automated flight deck. The tendency is for pilots to take cognitive short-cuts by pattern matching and using rule-based behaviour wherever possible. Once established in 'familiar territory' the skill-based behaviour completes the task. 2.4 Recognition of and Reaction to Failure 2.4.1 The point at which a pilot would intervene in an automated process is fundamental to the success of operation i.e. at what point does the automated system stop and require the human to take over? If the point of intervention is too early then there may be too many alerts in normal operation or too little information to make full use of the pilot's experience and problem solving ability. Conversely, if intervention is left too late then the pilot may well be landed in a deteriorating situation that has reached the limits of the automated system's capability. Research has shown that rather than design systems to work on thresholds or specific limits for control there should be a continuous flow of information to the pilot to indicate the difficulty or increasing effort needed to keep relevant parameters on target. 2.4.2 If we find ourselves in an unfamiliar situation then we try to make sense of the disparate data in front of us by using knowledge-based behaviour. However, we will minimise the cost of cognitive effort by pattern matching so that we can adopt previously learnt procedures, rule-based behaviour, wherever possible. Again, once established in 'familiar territory' the skill-based behaviour completes the task. December 2004 Chapter 1 Page 2
CAA Paper 2004/10 Flight Crew Reliance on Automation 2.5 Failures and Situation Awareness A review of 230 ASRS reports classified failures into two broad classes that reflected 'Emergency' and 'Abnormal' malfunctions. Results indicated wide differences in adherence to procedures depending on the type of malfunction. The report suggested that this may be caused by the crew perception of the malfunction, and training. The malfunctions classified as 'Emergency' had well-developed procedures that had been practised in the simulator on many occasions thus leading to rule-based behaviour. However, the Abnormal malfunctions had less well-defined procedures and therefore required the crew to revert to knowledge-based behaviour requiring more time and effort to properly assess and resolve the situation. “This refocusing of tasks likely resulted in reduced levels of procedural accomplishment, communications and situational awareness”. The report concludes that minor anomalies often have no immediate or obvious solution; therefore, the crew may resort to time-consuming thought, and trial-and-error procedures in order to deal with them. 2.6 Manual Flying Skill There has been very little research published on the subject of the change in manual flying skill experienced by crews of highly automated aircraft. Most of the comments arise from questionnaires and interviews which rely on subjective feedback of the change in perceived skill. However, it is consistently reported that there is a discernible reduction in manual flying skills that is correlated both with the use of automation and whether the operation is long haul or short haul. 3 Previous Studies 3.1 Studies of Pilots' Model and Awareness of the FMS 1989-94 Several studies (Weiner, 1989; Sarter and Woods, 1992 and 1994) indicate that although pilots were competent in normal operational situations there were gaps in the pilots' understanding of the functional structure of the automation which became apparent in non-normal, time-critical situations. Additionally, pilots may not be aware of the gaps in their knowledge about FMS functionality. 3.2 FAA HF Team Report 1996 The team reported concerns regarding pilot understanding of the automation's capabilities, limitations, modes, and operating principles and techniques. Additionally, they reported differing pilot decisions about the appropriate level of automation to use or whether to turn the automation 'on' or 'off' when they get into non-normal situations. The report also highlighted potential mis-matches between manufacturers' assumptions about how the flightcrew will use the automation. Furthermore, the report commented on the vulnerabilities in situational awareness, such as: mode awareness and flightpath awareness, including terrain and energy awareness. The team concluded that these “vulnerabilities are there because of a number of interrelated deficiencies in the current aviation system” (FAA, 1996 p3). They also highlighted the lack of sufficient knowledge and skills of designers, pilots, operators, regulators and researchers. “It is of great concern to this team that investments in necessary levels of human expertise are being reduced in response to economic pressures when two-thirds to three-quarters of all accidents have flightcrew error cited as a major factor” (FAA, 1996 p3). December 2004 Chapter 1 Page 3
CAA Paper 2004/10 Flight Crew Reliance on Automation 3.3 BASI Advanced Technology Aircraft Safety Survey Report 1998 Pilots expressed strongly positive views about advanced technology aircraft. Although some reported difficulties with mode selection and awareness on flight management systems, most pilots did not consider that too many modes were available. Many respondents gave examples of system 'work-arounds' where they were required to enter incorrect or fictitious data in order to ensure that the system complied with their requirements. The most common reasons for system 'work- arounds' were to comply with difficult air traffic control instructions and to compensate for software inadequacies during the descent approach phase of flight. The content and standard of instruction was not considered to provide adequate knowledge required to operate their aircraft in abnormal situations. Traditional airline check-and-training systems, developed to maintain flight standards on earlier generations of aircraft, did not necessarily cover all issues relevant to the operation of advanced aircraft. For example, the survey identified that there is the potential for pilots to transfer some of the responsibility for the safety of flight to automated systems, yet problems such as this are not generally addressed by check-and-training systems. 3.4 Assessing Error Tolerance in Flight Management Systems 1998 Courteney (1998) presented the results of a study which reinforces the conclusions of the BASI study by highlighting the predominance of 'work-arounds'. This study raises the question that there are human factors issues beyond the more commonly accepted problems of mode complexity. “This includes crew being distracted by incompatibility between the FMS design and the operating environment, incorrect data and anomalies in the system, as well as training and procedures that are not sufficient for comprehensive system utilisation”. 3.5 ECOTTRIS 1998 The research was designed to improve the existing transition training procedures for pilots moving from conventional to advanced automated cockpits. The study reported a striking lack of standardisation between, and within, manufacturers for design philosophies of automated systems. On top of that airlines then adopt different Standard Operating Procedures regards the use of automation e.g. some airlines prohibit the use of certain modes; however, the trend is for an increasing prescription for the use of automation. Incident and accident reports from both European and US sources were analysed. Contrary to previous studies only 6% of reports were concerned with mode awareness but deficient CRM factors accounted for 39%. This was linked with incorrect settings, monitoring and vigilance, inadequate knowledge of aircraft systems, experience and flight handling. 3.6 ESSAI 2003 The Enhanced Safety through Situation Awareness Integration in training (ESSAI) programme sought to offer potential training solutions for improved safety by enhancing situation awareness and crisis management capability on the flight deck. The results indicated that situation awareness skills could be improved by training using a non-interactive DVD, a classroom activity to reinforce skills presented on the DVD and then two demanding Line Orientated Flight Training (LOFT) scenarios plus instructor led de-briefs. 3.7 HF Implications for Flight Safety of Recent Developments in the Airline Industry 2001 The JAA commissioned a study (Icon, 2001) to determine if there was an impact on flight-deck safety as a result of commercial developments such as: deregulation, December 2004 Chapter 1 Page 4
CAA Paper 2004/10 Flight Crew Reliance on Automation liberalisation and privatisation. The report identified three outcomes of commercial developments that have an effect on flightcrew: multicultural flight crew, merging of company cultures, and commercial pressures. Apart from the obvious concerns over differences in languages with multi-national crews there were other potential problems such as: reduced interaction both on- and off-duty, different SOPs, different interpretation of CRM, and differing levels of technical knowledge. It was concluded that when airlines merged or became part of a strategic alliance individual company cultures remained largely unaffected, thus creating the situation of flight-deck crewmembers operating with differing approaches to the overall task. Increases in commercial pressure were deemed to increase fatigue and the potential to reduce training budgets to the absolute minimum to satisfy regulatory requirements. However, the report highlighted mitigation of these concerns through the appropriate development of CRM and SOPs, and the adoption of an appropriate safety culture within the organisation. These commercial factors will therefore influence automation failures attributable to the organisational elements. 4 Training Regulations and Requirements 4.1 General A review of JAR-FCL 1 (JAA, 2003a), JAR-OPS 1 (JAA, 2003b) and other related material was made and several discussions were held with CAA personnel from the relevant departments to gain an understanding of these documents. A review of such documents is not presented here for obvious reasons; however, the content of these Requirements is discussed in Chapter Three. December 2004 Chapter 1 Page 5
CAA Paper 2004/10 Flight Crew Reliance on Automation Chapter 2 Review of Data 1 Review of Incident Data 1.1 UK CAA MOR 1.1.1 A search of the CAA MOR database was made using the following keywords: Airbus, Boeing and Embraer FMS, autopilot and automation/automatic problems for the period 1st January 2002 to 31st December 2003. The search yielded 147 pages of data which have still to be classified. Unfortunately, the keyword search did not capture all the problems associated with this topic; another search associated with an icing project yielded hitherto un-retrieved reports. 1.1.2 One qualitative observation of the data was apparent: in turbulence, aircraft speed variation resulted in the crew disconnecting the autopilot completely so that they could then fly the aircraft manually to control speed using pitch. This action results in an altitude bust (often the cause of the report in the first place). 1.1.3 An incidental observation was made during the course of this study. The content of the reports is very thin. Reporters do not provide much detail and therefore much valuable information is never recorded. Additionally, keyword searches do not capture all reports of interest to human factors research. It is recommended that a study be undertaken to determine if this valuable tool could be further refined for the purposes of tracking HF issues. 1.2 FODCOM 20/2002 The CAA has issued FODCOM 20/2002 on 29 August 2002. This FODCOM gives additional guidance to crews on the handling of aircraft with advanced instrumentation in turbulent conditions and required operators to review their procedures to take account of the FODCOM. The incident data, which spans 2002 to 2003, will be reviewed to determine if there was a significant change in events of this nature following the issue of this FODCOM. December 2004 Chapter 2 Page 1
CAA Paper 2004/10 Flight Crew Reliance on Automation Chapter 3 Discussion 1 General 1.1 Issues Highlighted for Investigation by CAA 1.1.1 As automation has taken over more and more of the manual skills of the pilot there is a risk that if the automation should fail then the pilot may not have the necessary skills to recognise, decide and take appropriate action to recover the situation. The CAA raised three issues: • Automation dependency • Loss of manual flying skills • Inappropriate crew response to failures 1.1.2 Failures of automation can be grouped into a number of areas. A failure could occur due to the automation system itself failing; a partial failure i.e. one function within a system, or a total failure of a system e.g. loss of autopilot. There could be a failure due to incorrect programming either from the pilot or from a secondary system providing incorrect data. Other failures may originate at an organisation level due to inappropriate procedures or as a result of the procurement of insufficient / inadequate training or education, or, failures may occur as a direct result of the design of the automation itself. 1.1.3 Examples of these different types of failures are given in the following paragraphs. The research indicated that there was much evidence to support the concern that crews were becoming dependent on flight deck automation. Furthermore, the new pilot function of system monitoring was dependent on the reliability of the automation itself. There was little research to provide a structured basis for determination of whether crews of highly automated aircraft might lose their manual flying skills. However, anecdotal evidence elicited during interviews and a brief mention in the ECOTTRIS study indicates that this is a concern amongst practitioners. The term “manual flying skills” is not fully defined and different organisations may use the term to mean slightly different things. Some definition needs to be included at the start of any further investigations such as: which skills are degraded, how can the change be quantified, and which pilot groups are affected. Finally, several MOR incidents revealed that crews do respond inappropriately having made an incorrect diagnosis of their situation in which the automation fails. For example, disconnecting the autopilot following an overspeed in turbulence then resulted in altitude busts. 1.1.4 Additionally, during the course of this research two more fundamental observations were made. First, pilots lack the right type of knowledge to deal with control of the flight path using automation in normal and non-normal situations. This may be due to incorrect interpretation of existing requirements or lack of a comprehensive training curriculum that encompasses all aspects of the published requirements. Second, there appears to be a loop-hole in the introduction of the requirements for CRM training that has resulted in many of the training personnel and managers responsible for the ethos and content of training programmes not fully understanding the significance of the cognitive aspects of human performance limitations. These observations will be discussed further in the following paragraphs. December 2004 Chapter 3 Page 1
CAA Paper 2004/10 Flight Crew Reliance on Automation 2 Automation failures 2.1 Normal Operation 2.1.1 The starting point for 'automation failures' is the acknowledgement of the inadequacies of the human-machine relation in the 'normal' case. Even with a fully serviceable system the crew, under certain situations, are already under increased workload to compensate for the design of the system thereby producing a deterioration in situational awareness bought on, in part, by the automation itself (Dekker and Orasanu, 1999). Therefore, the consequence of even the smallest of 'failures' may, depending upon situation, jeopardise the safe conduct of the flight. 2.1.2 Therefore, training should be improved to provide crews with a better understanding of the operation of the automation in the normal case as well as in response to the failure situation. 2.2 Automation System Failure 2.2.1 Consider a 'failure' of either the autopilot, autothrust or the flight management system. There could be a partial failure i.e. one function within a system e.g. altitude hold, or a total failure of a system e.g. loss of autopilot. 2.2.2 The Flight Crew Operating Manuals and CBT for the B747-400 and the A340 provide information on how the systems works and the basic method for normal operation and hardware failures. Procedures are supplied for use in the event of the display of a warning messages for total failure of the autopilot, autothrust, or flight management systems. Clearly, these failures will present the crew with a rule-based procedure that can be applied to recover or mitigate the situation. It is the role of the manufacturer to provide recommended procedures in the form of checklists; however, these procedures specifically do not include elements of 'airmanship'. Operators should ensure that training programmes include means and standards to be met regarding the interaction of Human Performance and Limitations with changes to the normal operation of the automation. This will, necessarily, be material that is in addition to that provided by the manufacturer. Procedures should be taught and trained in the context of an operating environment i.e. the procedure should not be covered as a button-pushing drill but more to highlight the differences to the workload and management of the operational task. 2.2.3 Both manufacturers stipulate procedures for input of data and cross-checking response of system modes. Airbus have included “Ten Golden Rules” as a result of operational feedback and individual operators have developed and published philosophies of operation to guard against complacency and human errors e.g. long- haul operator - very simple use of automatics; short-haul – AP at 1000 ft after take-off. But the studies discussed previously clearly indicate that pilots, who have access to all these written philosophies and procedures still confuse modes or make inappropriate decisions. 2.3 Programming/Input Failure 2.3.1 A programming failure may a occur when the automation is functioning normally but incorrect data has been input through either incorrect action by the pilot, or where a sub-system or associated system failure provides incorrect data to an automated system. Systematic errors may occur, for example, when databases used for navigation are incorrectly programmed. The very rare nature of these events places the human reaction into the “Complacency – over-reliance on automation” class that was discussed earlier. The Mount Erebus incident is an example of this type of failure. December 2004 Chapter 3 Page 2
CAA Paper 2004/10 Flight Crew Reliance on Automation 2.3.2 A further example comes from a recent VOR approach into Addis Ababa, a GPWS warning was received while the raw VOR signal and FMS provided compelling data that the aircraft was on track. In fact a number of factors conspired to place the aircraft some 4.5nm to 7.7nm off track. Disparate data was presented to the crew in the form of an unexpected altitude call-out, and an NDB bearing that was at odds with the VOR/ FM position. As it happened the VOR was in error and this produced an error in the FM position. However, the initial reaction was to believe the VOR because it was in agreement with the FM position and reject (or not use the information) from the NDB. The weighting of belief was in favour of the automation. If the crew had been flying a 'raw' VOR approach then the only other information available, i.e. the NDB, would have featured more prominently as a disagreement. 2.4 Organisation Failure 2.4.1 Organisation failure can occur when the organisation and management controlling the flight operation fails to ensure that the policies and procedures stipulated are coherent with the operational task. For example, incident reports cite cases where the use of ACARS to provide loadsheet information during taxy appears efficient from a commercial point of view but may provide a distraction during a critical moment prior to take-off. Other points were elicited during interviews such as the handling of flight critical data. Efficiencies are technically possible by using ACARS to request take-off data calculations. However, there is a concern that pilots will, in time, become used to merely reading data from one computer output into the input for another computer without 'thinking' about the accuracy or reasonableness of the data. This contrasts with the process of using a manual of tabulated data or graphical data where although the opportunity for mis-reading still exists at least there is a range of data presented. With an ACARS print out there is only the single answer and an incorrect input figure may not be easily apparent. An example was recently presented concerning an A340- 600 where the take-off weight was input as 240T instead of 340T. The resulting take- off performance figures were quite reasonable for an A340-300 and therefore familiar to the dual rated crew who failed to notice the error despite careful read-backs and cross-checks (it was the relief pilot who highlighted the error). 2.4.2 Integration of all aspects of human cognitive behaviour and the requirements of a commercial operation are necessary if policies and procedures are to be optimised for safety as well as efficiency considerations. Regulatory explanatory material should provide information to operators on specific areas to include in training programmes and 'best' practice for policies and procedures. 2.5 Design failure 2.5.1 There are substantial obstacles such as lead-time and costs before 'in-service' experience is fed back into new designs. Moreover, current designs have become accepted and indeed form the basis for common type ratings across a number of variants. Therefore, a single change must be incorporated in a variety of platforms. Notwithstanding the importance of continuing work to improve designs there will still be the problem of dealing with the in-service designs that could be with us for the next 30 years. It is for this reason that this report concentrates on the human aspect of automation issues. 2.5.2 As discussed in Couteney's paper known problems promote 'workarounds'; unknown problems require initiative, knowledge and experience to deal with. One of the 'workarounds' quoted in interviews was the conscious decision by one airline to not use the full automation capability of an aircraft on its initial introduction. As experience was gained procedures were adapted and the use of certain functions was trained and encouraged. December 2004 Chapter 3 Page 3
CAA Paper 2004/10 Flight Crew Reliance on Automation 3 Regulations for Training Requirements 3.1 JAR FCL JAR-FCL 1 (JAA, 2003a) was first issued in 1997, with amendments in 2002 and 2003, and was predominantly a harmonisation of existing standards within the JAA area. There was no attempt to conduct a 'training needs analysis' as such to verify that extant standards were effective and comprehensive. However, a review of previous standards reveals little change in philosophy over the years despite the acknowledged changes in the operational task facing pilots. The current Flight Crew Licence requirements indicate what the training courses should achieve in terms of syllabus and learning objectives but there is little guidance on how to achieve the aim. This level of detail is left to the Flight Training Organisations and airlines. The structure of the licence requirements has changed little since the end of the Second World War. 3.2 Initial Stages of Training 3.2.1 During initial training simple aircraft are utilised to concentrate on the basics of aircraft operation. Theoretical knowledge regarding aircraft systems is taught in an academic fashion and each system is treated in isolation during teaching and examination. The examination covers 9 subject areas and the majority of questions are in multiple choice format, with no penalty marking, and a 75% pass mark. Normal operation of aircraft systems and cross-system effects are highlighted during simulator training and reinforced during initial flight training. In parallel, flight skills, flight operations and flight procedures are introduced in the classroom with theoretical knowledge teaching and examination being conducted in the same fashion as aircraft systems. Simulation and initial flight training develop the motor schema required for manual flying (JAA, 2003a). 3.2.2 This learning/training process is consistent in so far as it is applied to the ab initio stage where the aircraft systems are simple, the weather is usually benign, the air traffic environment is simple, and the operating task minimal i.e. no time constraints or external commercial pressures. The architecture and operation of the simple aircraft systems can be easily and fully explained in the classroom and the examination process validates the students recall. The simulator and in-flight training allows the student to learn and practise the rule-based behaviour required to manage the systems and, to an extent, increases the students understanding of the systems. Operation and management of the systems requires the same level and type of cognitive activity as that employed during the examination stage i.e. memory recall. In a similar fashion the motor schema required for manual flying are developed through classroom (knowledge) to simulator and flight training (rule). The skill is developed with manual flying practice and is examined in context by performing the operational task. At the end of this stage the pilot can manually fly an aircraft to complete a basic operational task (control of the flight path) and the teaching/training and examination process has validity. 3.2.3 Before proceeding further it is important to understand the process by which we acquire and use knowledge. 3.3 The Concept of Knowledge The three basic domains of cognition are: perception, memory, and thinking. The boundaries of these domains are indeterminate; however, the processes involved in each have a bearing on how we assimilate and employ knowledge. Studies of amnesia have shown that the brain handles certain types of memory in physically different ways. This results in the classification of two types of knowledge: procedural December 2004 Chapter 3 Page 4
CAA Paper 2004/10 Flight Crew Reliance on Automation and declarative. Procedural knowledge is knowing how: to ride a bicycle or how to manually land an aircraft in a cross-wind. Declarative knowledge, in contrast, is knowing that: an aircraft uses Jet A1 fuel or that the auxiliary power unit can be used to replace the loss of an engine electrical generator. Declarative knowledge also includes episodic memory, the memory of a specific event. It should be obvious that one can have procedural knowledge without declarative knowledge of a subject and vice-versa. For example, one can ride a bicycle but it is unlikely that one can explain the principles of conservation of angular momentum that describe why we don't fall off! Equally, Dr. John Fozzard, the lead design aerodynamicist for the Harrier, can explain why a jump-jet can hover but would not relish the opportunity to demonstrate the effect at the controls. 3.4 Requirements for CPL/ATPL Appendix 1 to JAR-FCL 1.470 sets out the theoretical knowledge requirements for the ATPL (A) licence. These syllabi are expanded in the associated Learning Objectives. Unfortunately, the reality is that students only learn what is required for the exam of the individual module. At present there is little consideration given to the introduction of automation as an integral component of the flight deck task. Rather the topic is treated as a 'system' and as such consigned to the same format as hydraulics, electrics etc. Rignér and Dekker (1999) state: “If the goals of flight education are to make the pilots able to transfer their knowledge (from the training situation to the airline environment), so they can manage both routine and novel situations, training methods that rely on reproductive memory do not make the grade.” So, once the student has gained his ATPL (A) Theoretical Knowledge credits he has acquired a limited level of declarative knowledge but very little procedural knowledge that is relevant to working with the automation of a modern flight deck. 3.5 Type Rating 3.5.1 Once again theoretical knowledge for the Type Rating is presented and assimilated as declarative knowledge. Individual systems and individual multiple choice exam format. Some procedural knowledge is introduced in the form of practical training in the use of autopilot, autothrust and flight management systems. However, the training is limited to use of system in normal mode and with hardware failures only. In fact, the complex nature of these systems means that the limited exposure of these sessions is often accompanied by the phrase “Don't worry about that, you will pick that up on the line”. 3.5.2 During the research for this report a review of CBT packages for the B747-400 and the Airbus A340 autopilot and FMS modules was made. In summary, what was presented amounted to an exposition of the capabilities of the systems themselves. Individual facets of each system were presented with occasional use of the phrase “the use of the equipment will be made clear in the sessions on the simulator or training device”. However, interviews with ground training personnel yielded comments that the normal procedures and non-normal situations, for which there was a published procedure, were covered but there was little, if any, time allocated to the presentation of Human Performance Limitations and the management of the automation in realistic settings. Again, this is dealt with during Line Training. Further interviews with training captains produced comments that during Line Training, opportunities to demonstrate anomalies were limited, unless the situation just happened to present itself. Clearly, at this stage of training, there would be no question of demonstrating automation failures by deliberately downgrading system capability. So at the end of the Type Rating training the pilot is competent to manage the system in a normal situation based on declarative knowledge but has little experience or procedural knowledge of normal operation and even less in the case of failure, i.e. non-normal situations. December 2004 Chapter 3 Page 5
CAA Paper 2004/10 Flight Crew Reliance on Automation 3.6 Proficiency Checks 3.6.1 The requirements for the Skills Tests contained within JAR-FCL (JAA, 2003a) and amplified in Standards Document 24 (CAA, 2003b) are heavily weighted towards the checking of the manual flying skill of the pilot. Specific guidance is given on the tolerances on flight path parameters that must be achieved and also the manner in which such targets are satisfied. However, the issue of controlling the flight path by means of the autopilot and FMS and the demonstration of such skill is grouped with 'other aircraft systems'. Indeed, one may infer that such skill is deemed of a low priority given that this facet is only required to be evaluated once every three years and there is no stipulation as to the degree of competence that is required. 3.6.2 Standards Document 24 does make specific mention of the use of automation for the departure and arrival phases but this is done in a 'concessionary' manner, viz. “Item 3.9.1 - Departure and Arrival Procedures, […] b) Full use of automatics and LNAV if fitted is permitted. Examiners are encouraged to use their imagination to obtain maximum benefit from this item of the test. For example, if LNAV is used, a departure with a close in turn that may require some speed control or a change to ATC clearance that may require some reprogramming of the FMS might be appropriate. […] g) If the arrival procedure contains a hold, this can be assessed. Automatics can be used and therefore value can be obtained by giving a last minute clearance into the hold, or if FMS is fitted, an early exit from the hold to see how the FMS is handled.” (CAA, 2003b p11) 3.6.3 Furthermore, the specific paragraph entitled “Automatics” reinforces this idea that the automation may be used as a concession. These words do little to highlight the complex nature of modern automation and the degree of competence that is necessary for safe and consistent application of this tool across the range of situations that are commonly met in contemporary commercial operations. 3.7 Knowledge of Manual Flying vs Automatic Control 3.7.1 From the initial stages of flying training pilots develop skills to manually control the flight path in a feed-forward type of behaviour. This means that when recognising an error in the flight path performance the pilot makes a control input in anticipation of a desired response – they think ahead in a pro-active manner. However, studies have shown that pilots operating modern automation for flight path control do not have the knowledge or understanding to predict the behaviour of the automation based on detection of an error and selection of a control input. They cannot always predict the behaviour or feedback cues of the systems modes; as a result it may be said that they behave in a feedback or reactive manner - they are behind the aircraft. 3.7.2 As illustrated above there is a recognisable difference in the way humans (pilots) handle certain types of knowledge. The basic skills associated with 'manually flying' an aircraft are predominantly based on procedural knowledge i.e. how to achieve the task. However, the use of automation to control the flight path of an aircraft is taught as declarative knowledge. Pilots are required to manage systems based on a knowledge that the autoflight system works in a particular fashion. So, the pilot is faced with the same operational task of controlling the flight path but employs two different strategies of cognitive behaviour depending upon whether the task is manually or automatically executed. As discussed above the current requirements for licence and type rating issue prescribe standards and experience in the procedural knowledge of manual control of the flight path; however, there are no similar requirements to ensure appropriate standards and experience for the procedural knowledge of control of the flight path using automation. December 2004 Chapter 3 Page 6
CAA Paper 2004/10 Flight Crew Reliance on Automation 3.7.3 It may be concluded that pilots lack the right type of knowledge to deal with control of the flight path using automation in normal and non-normal situations. This may be due to incorrect interpretation of existing requirements or lack of a comprehensive training curriculum that encompasses all aspects of the published requirements. It suggested that there should be a shift in emphasis in the way automation for flight path control is taught and trained. Further research is required to identify the cause and provide a solution. 3.8 Crew Resource Management 3.8.1 Crew Resource Management (CRM) was introduced into commercial aviation during the late 1970's. It was initially based upon concepts adapted from business management behaviour programmes in the US. Predominantly, initial CRM topics were limited to behavioural and physiological aspects. These concepts were refined during the 1980's to include psychological topics and mandated as part of the licence requirements following AIC 18/1991 (CAA, 1991). All licence holders prior to 1st January 1992 were exempt from the Human Performance and Limitations exam but were required to undergo an Initial CRM course on joining a new company and to undergo recurrent training on an annual basis. Since then the emphasis for CRM has strengthened in terms of the practical application of the behavioural marker system, NOTECHs etc., resulting in the recently published Standards Document 29 (CAA, 2001) and accompanying CAP 737 (CAA, 2003c). However, the areas relating to the practical application of the cognitive elements of human performance, in particular in relation to the human-machine operations, have not been as widely promoted nor understood. 3.8.2 Training and management pilots who are required to implement JAR-OPS requirements are, for the most part, in the category of licence holders who were exempt from the Human Performance and Limitations exam. Following interviews they appeared to fall into two classes that either thoroughly endorse all aspects of Human Performance and Limitations i.e. behavioural, physiological and cognitive limitations, or still view CRM as limited to behavioural aspects of flight deck operation. All requirements and regulations are subject to 'interpretation'. It appears that the requirements for training in, and the application of, the cognitive elements of human performance on the flight deck and their impact on the operations of highly automated systems has been better understood by some than others. It is only by obtaining a thorough understanding of the cognitive limitations of pilots in the flight deck environment that operational policies and procedures can be effectively implemented. 3.8.3 It may be concluded that there was a loop-hole in the introduction of the requirements for CRM training that has resulted in many of those responsible for the oversight of training programmes not fully understanding all the cognitive aspects of human performance limitations. 3.9 Line Oriented Flight Training Interviews with training personnel revealed that the principles of LOFT are included in design of OPC / LPCs; however, LOFT as an exercise in itself was only included as part of the recurrent training schedule if time and resources were available. However, LOFT is a valuable tool for examining and training procedural knowledge of how to fly the aircraft using automation and yet may not be fully included in training budgets. December 2004 Chapter 3 Page 7
CAA Paper 2004/10 Flight Crew Reliance on Automation Chapter 4 Conclusions and Recommendations 1 Dependency on Automatics Leads Crews to Accept what the Aircraft is doing without Proper Monitoring 1.1 Summary 1.1.1 The availability of automation and automated decision aids encourages pilots to adopt a natural tendency to follow the choice of least cognitive effort. Training crews on automation bias or to verify correct automated functioning had no effect on automation-related omission errors, and neither did display prompts that reminded crews to verify correct functioning. However, there was evidence that pilots did perform better when the event was flight critical in nature. 1.1.2 There are two distinct types of knowledge that pilots have: a) Declarative knowledge – the knowledge that the system works in a certain way. b) Procedural knowledge – knowing how to use the system in context. The use of automation to control the flight path of an aircraft is taught mainly as declarative knowledge. Pilots are required to manage systems based on a knowledge that the autoflight system works in a particular fashion, this is different for manual flying skills. Manual Flying The current requirements for licence and type ratings issue prescribe standards and experience in the procedural knowledge of manual control of the flight path, pilots are required to know and demonstrate how to control the flight path manually. Automated Flying There are no similar licensing or type rating requirements, to ensure appropriate standards and experience for the procedural knowledge of how to control the flight path using automation. Pilots are taught that the automation works in a particular way but their ability to use it is not checked to anywhere near the extent of checks for manual flying skills. 1.1.3 Therefore, it may be concluded that pilots lack the training and checking for control of the flight path using automation in normal and non-normal situations. Document 24 requires demonstration of the task of flight path control; however this is heavily weighted towards manual skills. Demonstration of proficiency in controlling the flight path using the automation is included as a secondary concern for the departure and arrival without detailed guidance on manoeuvres or tolerances to be achieved, which is in contrast to the guidance provided for the manual skill check. 1.1.4 The point at which a pilot would intervene in an automated process is fundamental to a successful outcome. This is not a well defined training goal and how and when decisions are made is variable within flight crews and organisations. The level busts resulting from disconnection of the autopilot during a turbulence induced overspeed event is evidence of incorrect intervention strategy. 1.1.5 Type rating training is limited to use of autopilot and FMS system in normal mode and with hardware failures only. CBT packages for the B747-400 and the Airbus A340 autopilot and FMS modules amount to an exposition of the capabilities of the systems themselves. Without adequate knowledge it is more likely that flight crews will accept what the aircraft is doing because they do not always have the knowledge or experience to predict the results of the automation targets and modes displayed. December 2004 Chapter 4 Page 1
You can also read