Apoptosis in Tumor Progression From cell biology to therapy An example with Microtubule-Targeting Drugs - M2 onco 2011-2012
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
M2 onco 2011-2012 Apoptosis in Tumor Progression From cell biology to therapy An example with Microtubule-Targeting Drugs Diane BRAGUER INSERM UMR911
Plan Introduction mort versus survie et contexte du cancer Les 3 grandes voies de mort cellulaire Apoptose Autophagie Nécrose Mitochondrie Fonctions Dynamique du réseau mitochondrial Cytosquelette microtubulaire Fonctions Cibles des MTA Relations microtubules - mitochondries au travers de notre expérience
No death without life : vital functions of apoptotic effectors Apoptosis effectors exhibit vital functions that are predominantly involved in the adaptation to stress Redox stress : AIF Metabolic stress : BH3-only DNA damage : Endo G Thermotolerance : Omit Differentiation : caspases (inflammation, immunity) Defective ou inefficient apoptosis is an acquired hallmark of cancer cells Tumor cells : genetic defects in progression of cell death that limit the clinical efficacy of the death inducing agents more focused in individualized therapies Therapy : to target the cell death pathways to render a cell once again sensitive Cell death pathways ubiquitinous but also differences in each type of cancer 3 highly conserved cell death pathways apoptosis autophagy necrosis
Signal transduction pathways activated by TRAIL : apoptosis vs survival Pavet oncogene 2010 Therapeutics: TRAIL receptor agonist antibodies TRAILR1 (mapatumumab) TRAILR2 (lexatumumab and drozimumab) : few significant objective responses
Bcl-2 protein family Pore Membrane phosphorylation sites formation anchor α1 α2 α3 α4 α5 α6 α7 α8 α9 Bcl-2 BH4 BH3 BH1 BH2 MA Hydrophobic pocket Bcl-2 homology domains (BH) Petros et al., 2000 BH3-only activators ( Bim, tBid, Puma) bind 5 antiapoptotic proteins BH-only sensitizers : Bad and Bmf bind to Bcl2, BclXL and BclW Bik and Hrk bind to BclXL , BclW and A1 Noxa bind to Mcl-1 and A1 Petros et al., 2000
Overview of the three models of regulation of apoptosis by Bcl-2 family proteins Andrews DW, et coll (BBA) - Mol Cell Res Vol 1813,(4), April 2011, Pages 508-520 Mitochondria: The Deadly Organelle Anti Bcl-2 : oblimersen, Gossypol, obatoclax : low efficacy BH3 mimetics (ABT 737) : promising
Caspases 14 mammalian caspases Synthesized as inactive precursors and upstream signals convert them into mature proteases Initiator caspases : long prodomains containing either a death effector domain (caspase-8 and caspase-10) or a caspase recruitement domain (caspase-2 and caspase-9), activated via oligomerization-induced autoprocessing Effector caspases : short prodomains (caspase-3, caspase-6 and caspase-7), activated by granzymeB or initiator of caspases Caspase-4 and -12 : endoplasmic reticulum stress pathway Proteolytic cleavage at Asp separating the large and small subunits caspase-3 :capable of cleaving the DNA repair enzyme poly(ADP-ribose)polymerase (PARP) and the inhibitor of caspase-activated DNAse (ICAD) Could be considered to possess tumor suppressor function Do their deregulation enhance tumorigenic potential ?
Mammalian inhibitors of apoptosis (IAP) family Mads Gyrd-Hansen and Pascal Meier, 2010
Survivin Survivin is a member of the IAPs family. It promotes cell survival through interference with multiple cell cycle-related proteins such as Aurora B kinase. Survivin also inhibits cell death through interference with both caspase-dependent and -independent cell apoptosis. It may also play a role in the regulation of cancer cell autophagy. The physical association of XIAP with survivin was found to drive NFκB activation, which in turn leads to increased autocrine production of fibronectin, signalling by β1 integrins and activation of the cell motility kinases focal adhesion kinase (FAK) and SRC11. This results in tumour cell invasion in vitro and metastatic dissemination in vivo. Importantly, the role of XIAP in regulating metastasis seems to be independent of its ability to modulate cell survival through caspase inhibition. At the clinical level, studies on clinical specimens have shown that survivin expression is up-regulated in various human cancers and its up-regulation is associated with tumour resistance to both chemotherapy and radiation therapy. However, the development of survivin inhibitors is relatively slow as compared to other therapeutic inhibitors for cancer treatment.
Autophagy A homeostatic cellular recycling mechanism that mediates removal of old or dysfunctional proteins and organelles, and is particularly important for cell survival during conditions of metabolic stress A dual role in cancer: it can allow cancer cells to overcome metabolic stress (hypoxia, lack of nutrients) or suppress tumor progression through degradation of oncogenic proteins and cell death Many anticancer drugs (such as inhibitors of mTORC1, the proteasome, or histone deacetylases) induce autophagy; whether autophagy enhances their antitumor properties or contributes to therapeutic resistance often remains unclear
Autophagy
Model of apoptosis regulation by Beclin 1 and its fragments R Kang et al, Cell Death and Differentiation (2011)
Necrosis
Krishna Biochem J 2011
Mitochondrial network APOPTOTIC INTRINSIC PATHWAY METABOLISM (ATP, respiration, ROS) Bcl-2-like Bax-like caspase cascade activation…and apoptosis BH3-only MITOCHONDRIA DYNAMICS Motility Fusion/Fission balance
Mitochondria in tumor cells glycolysis Bioenergetic index of the cell (BEC) Indran et al, BBA 2011
Mitochondria: promising targets for cancer chemotherapy
Regulation of mitochondrial metabolism by Bcl-2 (non canonical activity)
Dynamique des mitochondries et morphologie Fusion-fission and transport 3 GTPases de la famille des dynamines DRP1 dynamin-related protein fission MFN mitofusine 1 et 2 (mb externe) et OPA1 (optic atrophy 1, mb interne) fusion Contrôle : fusion > fission mito filamenteuses Inhibition fusion fragmentation = fission (ponctiforme) Inhibition fission filamenteux ++ et interconnecté Transport des mitochondries le long des microtubules Intervention des protéines motrices Fait intervenir fusion et fission Transport d’ATP dans la cellule
Fusion mitochondriale Permet l’échange de protéines, de complexes respiratoires et d’ADN nécessaire à la stabilité de l’ADN mitochondrial (complémentation d’un gène défectueux porté par une molécule d’ADN par un gène sain porté par une autre molécule d’ADN) Ne dépend pas du cytosquelette Est abolie par dissipation du delta psy (apoptose) Mb externe et interne fusionnent séparément Utilisation de protéines fluorescentes photoconvertibles 2 types de fusion Fusion instable : kiss and run Fusion stable : mito allongée
Fission mitochondriale (fragmentation) et apoptose Nécessaire en fin de mitose Associée à l’apoptose Précède la libération de cyt c Bcl-2 proapoptotiques sont impliquées A.Savry, V.Rey
Hypoxia and mitochondria Hypoxie induit elargissement des mitochondries due à une fusion anormale (augmentation de l’expression de Mfn1), qui entraine une résistance à l’apoptose et donc survie Mazure et al, Bull Cancer 2011
Microtubule cytoskeleton : an Integrator of signaling cascades Mitosis Cell proliferation Cell polarity Cell migration Intracellular transport Differenciation
Microtubule dynamics Galjart 2010
Regulatory coordination of Microtubule Associated Proteins Structural MAPs (MAP1, MAP2, MAP4, Tau) + TIPs and co-polymerizing factors (EB1, CLIP 170, APC, CLASPs) Dis1/TOG Depolymerizing Kinesin-13 proteins Stathmin Katanin
Delivery of +TIPs to microtubule ends
Classification +TIP∗ Homologs† Interaction with other +TIPs ‘Core’ +TIPs EB1-like proteins Bim1 (Sc) Most known +TIPs Mal3 (Sp) CAP-Gly domain CLIP-170 CLIP-190 (Dm) EB1, CLIP-170, Bik1 (Sc) CLIP-115, p150glued, CLASP1,2, MCAK, Tip1 (Sp) LIS1 CLIP-115 – EB1, CLIP-170, CLASP1,2 p150glued NudM (An) EB1, CLIP-170 Ssm4 (Sp) SxIP motif CLASP1,2 Orbit/Mast (Dm) EB1, CLIP-170, Stu1 (Sc) CLIP-115, ACF7 Peg1 (Sp) APC Kar9p (Sc) EB1, MCAK ACF7 Shot/Kakapo (Dm) EB1, CLASP1,2 STIM1 – EB1 MCAK Klp10A (Dm) EB1, CLIP-170, XKCM1 (Xl) APC, Tip150 Tip150 – EB1, MCAK Navigators – Unknown Melanophilin – EB1 p140Cap – EB1 CDK5RAP2 – EB1 RhoGEF2 (Dm) – EB1 DDA3 – EB1 TOG domain Ch-TOG Msps (Dm) EB1 XMAP215 (Xl) Stu2 (Sc) Not classified LIS1 NudF (An) CLIP-170, p150glued NudA (An) Dynein heavy chain p150glued, LIS1
Microtubules are highly dynamic structures in living cells
It is not clear if microtubules serve as molecular scaffolds for proteins to exert their activity or if the proteins are sequestered by microtubules and therefore are functionally inactive.
Microtubule-Targeting Agents are potent anticancer drugs Drugs largely prescribed in adult and children cancers Vinca alkaloids : vinblastine, vincristine, vinorelbine, vinflunine Taxanes : paclitaxel, docetaxel, carbazitaxel, abraxane Drug family in development : Large reservoir of potentially therapeutic natural compounds Small molecules in preclinical and clinical investigation Drug combination schedules Drug vectorisation oral route with new pharmacokinetics profile Novel therapeutic use Limits : Drug resistance No tumor cell specificity Neurotoxicity Potent tools for understanding the function of microtubule cytoskeleton in cancer development
Microtubule targeting agents (MTA)
Microtubule targeting agents (MTA)
Microtubule Targeting Agents (MTA) mechanism of action Inhibit microtubule dynamic instability Tubulin-GFP EB1-GFP Inhibit chromosome congression to metaphase plate Induce apoptosis via the mitochondrial pathway
MTAs induce the intrinsic apoptotic pathway Mitochondrial morphology changes : increase in the cristae/matrix surface ratio Control Paclitaxel (2 hr) 0.07 ± 0.05 0.22 ±0.1 p < 0.0001 Cytochrome c release from mitochondria to the cytosol Ctrl 4h 24 h 48h VFL IC70 N. André 24 h B. Pourroy
MTAs induce the intrinsic apoptotic pathway Paclitaxel mechanism of action in colon carcinoma cells A.Gonçalves Modification of microtubule network and mitotic block Caspase activation independent of death receptor activation Ψm concomitent with caspase-8 cleavage Alteration of ∆Ψ Caspase-3 activation and PARP cleavage Involvement of mitochondria ?
Mechanisms of drug resistance Cellular efflux (MDR, MRP) Clinical relevance ? Limit diffusion in CNS Binding on the target Qualitative and quantitative alterations of tubulin-microtubule sytem Β isotypes(betaIII), associated proteins such as MAP2, MAP4 (Β Deficient induction of apoptosis P53, Bcl2-family Alterations in tumor cells that modulate microtubule functions (protein, RNA, metabolism) Others…
Microtubule-mitochondria communications MTA Bim Dynein ROS p53 Bax bax Bcl-2 bcl-2 Pro-apoptotic factors
P53 = gene suppresseur de tumeur DNA damage activation des kinases de check points (ATM et ATR) phosphorylation de p53 libération de sa liaison à mdm2 p53 active les check points du cycle jusqu’à réparation, si pas possible induction de l’apoptose P53 et apoptose À la mitochondrie Transcriptionnel Non transcriptionnel Interaction avec Bcl-2 donc antagonise Inhibe survivine bax, bid, puma les antiapoptotiques, et libère ainsi Activation de Bax les proapoptotiques Brenner
MTA and p53/Bcl-2 signaling MTA Dynein p53 Bax bax Ctrl bcl-2 Bcl-2 MTA Pourroy, Carré, Rey
MTAs and BCl-2 Diminution transcriptionnelle de Bcl-2 par les MTA WB VRL (nM) 0 10 100 Bcl-2 actine Q-RT-PCR Luciferase assay Augmentation de la fixation de p53 sur le promoteur de Bcl-2 après traitement (identification d’un nouveau site) V.Rey
Bcl-2 down-regulation is associated with taxol and vinca resistance in A2780 ovarian cells 120 Resistance (%) Cell Mito 100 TC1-pUSE Série1 80 * WT TC1 WT TC1 * * 60 * Série2 TC1-Bcl-2 * 40 * Bcl-2 20 Série3 TC1-Bcl-2∆loop 0 IC20 IC50 IC70 Resistance Resistance A2780-wt A2780-TC1 Factor A2780-TC1-Bcl-2 Factor TC1/wt TC1-Bcl-2/wt IC20 20 nM 500 nM 25 30 nM 1,5 IC50 25 nM 20 µM 800 700 nM 28 IC70 30 nM 55 µM 1830 8 µM 270 Restoring Bcl-2 expression led to a significant increase in TC1 cell sensitivity to VFL Esteve
Expression de Bcl-2 : un facteur prédictif de réponse à la chimiothérapie ?
Bcl-2 dependent transcriptional regulation of Bim ?
Mitochondrial signaling related to microtubule cytoskeleton Mitochondrial ROS induce Bim translocation to mitochondria and subsequent cell death Bim is involved in mitochontria fragmentation in Tax treated A549 cells Si ctrl Si Bim Taxol Mechanism of Bim translocation ?
? Bcl-2 nécessaire à la sensibilité des cellules A2780 au taxol ? Bcl-2 : une cible mitochondriale du Taxol ? Quels types de lignées/tissus ? Interaction directe Bcl-2-Tax Tax mime Nur77 récepteur d’une protéine capable de transformer Bcl-2 en « killer » Bim plus important que Bcl-2 dans la réponse aux MTA ? Etude Translationnelle ? Autres rôles de Bim ? migration ?
MTA Bim Dynein ROS p53 Bax bax bcl-2 Bcl-2
MTA Bim Dynein ROS p53 Bax bax Bcl-2 bcl-2 Pro-apoptotic factors
Olesoxime prevents MTA Neurotoxicity MTA + olesoxime MTA
Selective preservation of EB comets in neuronal differentiated cells Control olesoxime vehicle VCR PTX PTX + olesoxime VCR VCR + olesoxime
Olesoxime prevents MTA-suppressed mitochondrial motility ** Mitochondrial motility (µm/s) ** 0,1 0,08 0,06 0,04 0,02 0 Control olesoxime MTA MTA + olesoxime Rovini A et al, bicohem Pharmacol 2010
You can also read