Saline Stress Alters the Temporal Patterns of Xylem Differentiation and Alternative Oxidase Expression in Developing Soybean Roots1

Page created by Shawn Daniels
 
CONTINUE READING
Plant Physiol. (1998) 117: 695–701

           Saline Stress Alters the Temporal Patterns of Xylem
          Differentiation and Alternative Oxidase Expression in
                        Developing Soybean Roots1

                Mirna Hilal, Ana M. Zenoff, Graciela Ponessa, Hortensia Moreno, and Eddy M. Massa*
Departamento Bioquı́mica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de
   Investigaciones Cientı́ficas y Tecnológicas–Universidad Nacional de Tucumán), and Instituto de Quı́mica
 Biológica Dr. Bernabé Bloj, Chacabuco 461, San Miguel de Tucumán, 4000 Argentina (M.H., A.M.Z., H.M.,
           E.M.M.); and Departamento de Morfologı́a Vegetal, Fundación Miguel Lillo, M. Lillo 251,
                                  San Miguel de Tucumán, 4000 Argentina (G.P.)

                                                                                velopmental stages. Plant roots provide an attractive ex-
   We conducted a coordinated biochemical and morphometric                      perimental system for investigating salinity effects on
analysis of the effect of saline conditions on the differentiation zone         growth and other parameters for the following reasons: (a)
of developing soybean (Glycine max L.) roots. Between d 3 and d 14              they have a definable growing region in the tip and a
for seedlings grown in control or NaCl-supplemented medium, we                  separate nongrowing region consisting of mature, elon-
studied (a) the temporal evolution of the respiratory alternative               gated cells, some distance behind the tip (Ishikawa and
oxidase (AOX) capacity in correlation with the expression and
                                                                                Evans, 1995); and (b) root cells can be directly exposed
localization of AOX protein analyzed by tissue-print immunoblot-
ting; (b) the temporal evolution and tissue localization of a perox-
                                                                                to different NaCl concentrations by changing the root
idase activity involved in lignification; and (c) the structural                medium.
changes, visualized by light microscopy and quantified by image                    Previously, it was reported that excess NaCl in the
digitization. The results revealed that saline stress retards primary           growth medium induces structural changes in bean roots,
xylem differentiation. There is a corresponding delay in the tempo-             as well as leakage of ions correlated with alterations of the
ral pattern of AOX expression, which is consistent with the xylem-              cell membranes (Cachorro et al., 1995). It was also reported
specific localization of AOX protein and the idea that this enzyme              that NaCl treatment leads to changes in the lipid compo-
is linked to xylem development. An NaCl-induced acceleration of                 sition of bean roots (Cachorro et al., 1993; Zenoff et al.,
the development of secondary xylem was also observed. However,
                                                                                1994; Surjus and Durand, 1996) and affects the proton-
the temporal pattern of a peroxidase activity localized in the pri-
                                                                                extrusion activity, which appears to be partially dependent
mary and secondary xylem was unaltered by NaCl treatment. Thus,
the NaCl-stressed root was specifically affected in the temporal                on a H1-ATPase associated with the plasmalemma (Zenoff
patterns of AOX expression and xylem development.                               et al., 1994).
                                                                                   Knowledge about respiratory metabolism during saline
                                                                                stress is scarce (Fernandes De Melo et al., 1994). In this
                                                                                context, the role of the nonphosphorylating alternative
  Salinity is an environmental stress that limits growth and                    pathway, which is a common feature of higher plant res-
development in plants. The response of plants to excess                         piration (Moore and Siedow, 1991; Siedow and Umbach,
NaCl is complex and involves changes in their morphol-                          1995), has not been elucidated. This pathway can be in-
ogy, physiology, and metabolism. Most studies have been                         duced by a number of treatments generally described as
descriptive and have not elucidated mechanisms by which
                                                                                stress conditions, and thus it was suggested that the AOX
salinity inhibits plant growth (Cheeseman, 1988; Munns,
                                                                                pathway may be part of a stress response in plants (Purvis
1993). There are multiple genes that seem to act in concert
                                                                                and Shewfelt, 1993; Day et al., 1995). The participation of
to increase NaCl tolerance, and certain proteins involved in
                                                                                the AOX pathway in response to NaCl stress has been
salinity stress protection have been recognized (Bohnert
                                                                                analyzed in barley leaves (Jolivet et al., 1990), but the
and Jensen, 1996; Hare et al., 1996).
                                                                                reported data are difficult to interpret in part because they
  Within any organ there exists a range of both cell types
                                                                                were based on considerations, the validity of which has
and cell ages and, therefore, the metabolic functions and
                                                                                been questioned (Millar et al., 1995; Day et al., 1996).
the responses to environmental stimuli may be expected to
                                                                                   An approach toward understanding the mechanisms of
vary with these different patterns of localization and de-
                                                                                saline effects in young roots is to follow the time course of
                                                                                a series of biochemical, physiological, and structural events
  1
     This work was partially supported by the Consejo de Investi-               in the early stages of development. We studied the effect of
gaciones de la Universidad Nacional de Tucumán and by the
                                                                                NaCl treatment on the differentiation zone of developing
Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas of
Argentina.
                                                                                soybean roots by analyzing the temporal evolution of AOX
   * Corresponding author; e-mail massa@insibio.unt.edu.ar; fax
54 – 81–24 – 8025.                                                                Abbreviation: AOX, alternative oxidase.
                                                                          695
                                  Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                                 Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
696                                                                 Hilal et al.                               Plant Physiol. Vol. 117, 1998

                                                                                             MATERIALS AND METHODS
                                                                             Plant Growth and Saline Stress
                                                                               Soybean (Glycine max L. var UFV-8) seeds were germi-
                                                                             nated for 3 d at 28°C in sterile sand that was moistened
                                                                             with tap water. Then the seedlings were transferred to
                                                                             hydroponic culture in 25% Hoagland medium supple-
                                                                             mented with 120 mm NaCl (saline stress) or without the
                                                                             NaCl supplement (control). Plants were grown at 28°C
                                                                             under greenhouse conditions and harvested when indi-
                                                                             cated for each experiment during the period between d 0
                                                                             (sowing) and d 14 of development. The nutrient medium
                                                                             was renewed every 3 d. This standard protocol was fol-
                                                                             lowed for all of the experiments, except for that experiment
                                                                             whose results are shown in Figure 3.
                                                                               In the experiment shown in Figure 3, the seedlings were
                                                                             germinated and grown (at 28°C) in sand containing control
                                                                             or NaCl-supplemented Hoagland medium (140 mL/kg
                                                                             sand) over the whole period from 0 to 12 d of development.
                                                                             The sand was periodically moistened with distilled water.

                                                                             Selection of the Root Region Studied
Figure 1. Control (left) and NaCl-stressed (right) soybean seedlings at         The differentiation zone of the primary root was studied.
d 8 of growth; magnification 30.4.                                           To verify that the selected zone from both the control and
                                                                             stressed roots was identical at the different developmental
capacity and peroxidase activity, in correlation with the                    stages, a segment about 4 mm long was marked gently
tissue localization of these enzymes and NaCl-induced                        with a pen in the differentiation zone of the primary root in
structural changes. These coordinated analyses during a                      3-d-old seedlings grown in parallel with those used for the
defined growth period revealed that saline stress specifi-                   biochemical and morphological analyses. One-half of the
cally delays or advances the temporal evolution of deter-                    marked seedlings was transferred to the control medium
mined parameters and has no effect on the temporal pat-                      and the other half was transferred to the NaCl-
tern of others, leading to a plant that is not only smaller                  supplemented medium, and the localization of the selected
than the control but also with different biochemical and                     segment was observed during the following growth pe-
morphological characteristics.                                               riod. This segment remained without substantial length
                                                                             change and was localized almost in the middle of the
                                                                             primary root in both the control and the stressed seedlings
                                                                             over the period studied.

Figure 2. Temporal evolution of AOX capacity in the differentiation
zone of roots from control (E) and NaCl-stressed (F) seedlings. At d         Figure 3. Temporal evolution of AOX capacity in the differentiation
6 of growth, a group of the seedlings was transferred from the control       zone of roots from seedlings grown in sand containing control (E) or
to the saline medium (M) or from the saline to the control medium            NaCl-supplemented (F) Hoagland medium from d 0 to 12. Each
(‚). Each value is the mean 6 SD of three separate measurements. Fw,         value is the mean 6 SD of two separate measurements. Fw, Fresh
Fresh weight.                                                                weight.

                                  Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                                 Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
Effects of Saline Stress on Developing Soybean Roots                                            697

Assays of AOX Capacity and Peroxidase Activity                        phosphate buffer (pH 7.2). The samples were dehydrated
                                                                      with a graded series of ethanol, ending with 100% acetone,
   AOX capacity was measured as described previously
                                                                      and then embedded in Spurr’s medium (Spurr, 1969) and
(Hilal et al., 1997) in slices of the selected segment from the
                                                                      polymerized overnight in a 60°C oven. Cross-sections (0.5
primary root-differentiation zone of control and stressed
                                                                      mm) were prepared with an ultramicrotome and stained
seedlings during the growth period between d 2 and 14.
                                                                      with toluidine blue (Richardson et al., 1960) before visual-
   Peroxidase activity was determined in extracts of the
                                                                      ization with a light microscope.
selected root segments, as described by Peyrano et al.
                                                                         The number of xylem vessels and the areas occupied by
(1997), using the substrate syringaldazine. The specific ac-
                                                                      the xylem and phloem in the stele and the intercellular-to-
tivity was expressed as the increase in A530 per minute and
                                                                      cellular-area ratios in the cortex were determined from
milligram of protein. Protein concentration was measured
                                                                      images of the root cross-sections digitized with a charged-
by the procedure of Lowry et al. (1951).
                                                                      coupled device 200E video camera (Videoscope Interna-
                                                                      tional, Washington, DC) coupled to a Macintosh Quadra
Tissue Prints                                                         700 computer. Image analysis and quantitation were per-
                                                                      formed with NIH Image 1.45 software (Rasband W, Na-
   Tissue printing of cross-sections from the differentiation
                                                                      tional Institutes of Health, Bethesda, MD).
zone of primary roots (selected as indicated above) and
specific immunostaining with anti-AOX monoclonal
antibody were performed as described previously (Hilal et                                         RESULTS
al., 1997) at d 8 of plant growth under control or saline
conditions.                                                              Figure 1 shows the appearance of control and NaCl-
   Tissue prints of the same root zone were also made on d            stressed seedlings at d 8 of growth. Roots of plants treated
3 and d 10 of control and stressed seedlings to detect                with NaCl were shorter and had fewer secondary roots
activity of syringaldazine oxidase, a peroxidase associated           than the controls. Saline stress decreased the growth rate of
with lignification (Goldberg et al., 1983). The assay condi-          soybean seedlings, a well-known phenomenon.
tions were as described by Peyrano et al. (1997)
                                                                      Temporal Evolution of AOX Capacity in Control and
Mophometric Analysis of the Root-Differentiation Zone                 NaCl-Stressed Roots
   The selected segments from the root-differentiation zone             AOX capacity in the differentiation zone of control roots
of control and stressed seedlings were fixed in filtered              greatly decreased between d 3 and 8, as already reported
control or NaCl-supplemented Hoagland medium, respec-                 (Hilal et al., 1997), whereas in the stressed roots AOX
tively, with 3% glutaraldehyde for 6 h at 4°C and then                capacity remained high at d 8 (Fig. 2) and declined several
postfixed overnight with 1% osmium tetroxide in 0.1 m                 days later than in the controls. At d 6 of development,

                                                                                          Figure 4. Localization of AOX protein. Tissue
                                                                                          prints of cross-sections from the differentiation
                                                                                          zone of control (A and B) and NaCl-stressed (C
                                                                                          and D) roots at d 8 of growth. A and C, Amido
                                                                                          black stains of total protein. B and D, Immuno-
                                                                                          stains specific for AOX. x, Xylem; p, phloem;
                                                                                          and c, cortex. Bars 5 250 mm.

                              Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                             Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
698                                                          Hilal et al.                                Plant Physiol. Vol. 117, 1998

when some of the stressed seedlings were transferred to the
control medium, their root AOX capacity decreased earlier
than that of the seedlings maintained in saline medium
(Fig. 2). When some of the control seedlings at d 6 of
development were transferred to the saline medium, they
retained their root AOX capacity for a longer period than
those remaining in the control medium. Results in Figure 2
show that saline stress delays the decline of AOX capacity
in developing roots, but it does not induce an increase of
this capacity.
   In the experiment shown in Figure 2, saline stress was
initiated at d 3 of plant growth when AOX capacity in the
root-differentiation zone was highest (Hilal et al., 1997). A
different protocol was followed in the experiment pre-
sented in Figure 3. In this case, the seedlings were grown
on sand containing control or NaCl-supplemented Hoag-
land medium over the whole period from d 0 to 12 of
development. As shown in Figure 3, AOX capacity in the
differentiation zone of the control roots was maximal at d
3 to 5, whereas in the stressed roots the peak of AOX
capacity was shifted to 2 d later. Thus, the temporal pattern
of AOX capacity in developing roots is delayed by saline
stress.

Localization of AOX by Tissue-Print Immunoblots
   Control roots at d 8 showed no specific immunostaining
in the differentiation zone using tissue-print immunoblots
(Fig. 4B) because, as already reported (Hilal et al., 1997),
AOX protein is no longer expressed at this developmental
stage. However, in roots of NaCl-stressed 8-d-old seed-
lings, the xylem strongly reacted with the anti-AOX mono-
clonal antibody (Fig. 4D), indicating that AOX protein was
still present in this tissue. This correlates with the delayed
decline of AOX capacity in stressed roots (Fig. 2) and
shows that the xylem-specific localization of AOX (Hilal et
al., 1997) is conserved under saline stress. Figure 4, A and
C, illustrates total protein, as evidenced by amido black
staining of tissue prints from control and NaCl-stressed
roots, respectively.
                                                                      Figure 5. Anatomy of control and NaCl-stressed roots. Light pho-
                                                                      tomicrograph of cross-sections from the differentiation zone of fixed
Morphometric Analysis of Developing Roots                             and embedded roots. A, At d 3 (after germination in sand). B, Control
                                                                      at d 8. C, NaCl stressed at d 8. x, Xylem; p, phloem; and c, cortex.
   To determine whether the NaCl-induced delay in AOX                 Bar 5 260 mm; all panels are shown at the same magnification.
expression was associated with retarded root differentia-
tion, root anatomy was examined by light microscopy of
cross-sections from the differentiation zone, which had
                                                                      roots, whereas the number decreased significantly in con-
been previously fixed and embedded. As shown in Figure
                                                                      trol roots between d 3 and 8 of growth. The changes in the
5, the most notable effect of the saline stress was to retard
                                                                      xylem of control roots shown in Table I reflect the normal
primary xylem differentiation. The appearance of proto-
                                                                      differentiation of protoxylem to metaxylem over the period
xylem and metaxylem in the stressed roots at d 8 of growth
was similar to that in the 3-d-old seedlings rather than to           between d 3 and 8 of plant growth. These changes did not
that in the control roots at d 8. This effect was quantified          occur in the NaCl-stressed roots, indicating delayed pri-
with an image analyzer and the data are summarized in                 mary xylem differentiation.
Table I. The total area of the xylem in the cross-sections of           No appreciable effect of the saline stress was observed in
the root differentiation zone was significantly smaller in            the phloem (Fig. 5; Table I). In the cortex the intercellular-
the control 8-d-old seedlings than at d 3 of growth, whereas          to-cellular-area ratio was significantly decreased in the
in the NaCl-stressed 8-d-old seedlings, the xylem area re-            NaCl-stressed roots (Table I), reflecting a reduction in the
mained similar to that at d 3 of development. Also, the               apoplast in response to the increased NaCl concentration in
number of vessels remained constant in the NaCl-stressed              the growth medium.

                              Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                             Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
Effects of Saline Stress on Developing Soybean Roots                                     699

                    Table I. Morphometric analysis of cross-sections from the differentiation zone of the primary root
                      Cross-sections similar to those shown in Figure 5 were analyzed as indicated in “Materials and
                    Methods.” Data are the means 6 SD of at least four seedlings from each group. Values in the same line
                    with different lowercase letters are significantly different (P , 0.05) by the Student’s t test.
                                                                                                  d8
                                   Tissue                       d3
                                                                                     Control                Stressed
                       Conduction system
                         Phloem areaa                     0.035 6 0.004a        0.026 6 0.003b         0.027 6 0.004b
                         Xylem areaa                      0.017 6 0.003a        0.011 6 0.001b         0.015 6 0.002a
                         Xylem elementsb                     49 6 1a               32 6 1b                49 6 7a
                       Cortex
                         Intercellular/cellular area      0.043 6 0.001a        0.049 6 0.002b         0.038 6 0.003c
                       a
                           Area (square millimeters) occupied by the phloem or the xylem in the cross-sections analyzed.
                       b
                           Number of vessels from the protoxylem and the metaxylem in the cross-sections analyzed.

Temporal Evolution and Tissue Localization of Peroxidase                   to that of the NaCl-stressed roots at d 10, as evidenced by
Activity in Developing Roots                                               tissue-print analysis (not shown).
  To determine whether the above results reflect a direct
effect of saline stress on the seedling growth rate leading to
a delayed evolution of every parameter linked to root                                                DISCUSSION
development, we analyzed the effect of NaCl on a peroxi-                      The reduction in the apoplast of stressed roots relative to
dase involved in lignification (Goldberg et al., 1983). This               the controls (Table I) is in agreement with previous data on
enzyme activity, measured with the substrate syringald-                    the effects of NaCl in bean roots (Cachorro et al., 1995) and
azine, was not affected in tomato roots under saline con-                  probably reflects an adaptive response to avoid NaCl load-
ditions (Peyrano et al., 1997).                                            ing (Wegner and Raschke, 1994). Data in this paper re-
  As shown in Figure 6, peroxidase activity in the differ-                 vealed that saline stress alters the temporal pattern of
entiation zone of control roots presented two maxima: one                  xylem differentiation, leading to the delayed development
at d 3 to 4, coincident with the peak of AOX capacity                      of the primary xylem (derived from the pro-cambium) and
reported by Hilal et al. (1997), and the other at d 9 to 10.               precocious development of the secondary xylem (derived
The temporal pattern of peroxidase activity was unaffected                 from the cambium). Thus, saline stress had opposite effects
by the saline conditions.                                                  on the temporal evolution of primary and secondary xy-
  The tissue localization of this peroxidase is shown in                   lem, two tissues with different ontogenic processes.
Figure 7. The enzyme was concentrated in the xylem at d 3                     AOX protein, which has a xylem-specific localization
and 10 (Fig. 7, B, E and H). An unexpected result revealed                 (Hilal et al., 1997), exhibited a delayed pattern of expres-
by tissue prints in Figure 7 was the accelerated develop-                  sion that was apparently linked to primary xylem devel-
ment of secondary xylem in the NaCl-stressed roots (Fig. 7,                opment. In this regard, it should be noted that depending
G and H) compared with the control roots (Fig. 7, D and E).                on the developmental stage at which exposure to salinity is
The development of the secondary xylem in the control                      initiated, three different situations were observed: (a) when
roots was slower and its appearance at d 18 became similar                 NaCl treatment was initiated before the increase in AOX
                                                                           capacity (Fig. 3), there was a shift in the peak and, thus,
                                                                           values either lower or higher than the controls could be
                                                                           obtained at different days of growth; (b) when NaCl treat-
                                                                           ment was initiated when AOX capacity was high (Fig. 2),
                                                                           there was a delay in the decline of AOX capacity and, thus,
                                                                           values higher than the controls were obtained between d 4
                                                                           and 12; and (c) when NaCl treatment was initiated after
                                                                           AOX decline (Fig. 2), there was no NaCl-induced enhance-
                                                                           ment of AOX capacity. Therefore, it is clear that salinity
                                                                           delays developmental processes linked to AOX expression.
                                                                           Once such events have occurred, NaCl is not able to modify
                                                                           AOX capacity.
                                                                              On the contrary, the temporal evolution of a peroxidase
                                                                           activity localized in the xylem was not affected by saline
                                                                           stress even though this enzyme presented a peak of activity
                                                                           at d 3 to 4 of root development (Fig. 6), coincident with the
Figure 6. Temporal evolution of peroxidase activity in the differen-       peak of AOX capacity. Therefore, saline stress does not
tiation zone of control (E) and NaCl-stressed (F) roots. Each value is     alter the evolution of every parameter that has a temporal
the mean 6 SD of three separate measurements. prot, Protein.               pattern linked to root development or seedling age.

                                   Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                                  Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
700                                                                Hilal et al.                                  Plant Physiol. Vol. 117, 1998

          Figure 7. Localization of peroxidase activity. Tissue prints of cross-sections from the root differentiation zone: at d 3, after
          germination in sand (A, B, and C); at d 10, controls (D, E, and F); and at d 10, NaCl stressed (G, H, and I). A, D, and G,
          Toluidine blue stain of total protein. B, E, and H, Stain for peroxidase activity. C, F, and I, Blanks for peroxidase activity,
          omitting the substrate H2O2. PX, Primary xylem; SX, secondary xylem; P, phloem; and C, cortex. Bar 5 350 mm; all panels
          are shown at the same magnification.

  In conclusion, this work is the first demonstration, to our                                         LITERATURE CITED
knowledge, of NaCl-induced retardation in primary xylem
                                                                             Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased
differentiation associated with a delayed pattern of AOX                       salt tolerance—the next step. Aust J Plant Physiol 23: 661–667
expression, as well as subsequent acceleration in the sec-                   Cachorro P, Olmos E, Ortiz A, Cerdá A (1995) Salinity-induced
ondary xylem differentiation. The net result is that the                       changes in the structure and ultrastructure of bean root cells.
NaCl-stressed plant is not only smaller than the control one                   Biol Plant 37: 273–283
but has specific modifications in various biochemical and                    Cachorro P, Ortiz A, Cerdá A (1993) Effects of saline stress and
                                                                               calcium on lipid composition in bean roots. Phytochemistry 32:
morphological parameters.                                                      1131–1136
                                                                             Cheeseman JM (1988) Mechanisms of salinity tolerance in plants.
                                                                               Plant Physiol 87: 547–550
                      ACKNOWLEDGMENTS                                        Day DA, Krab K, Lambers H, Moore AL, Siedow JN, Wagner
                                                                               AM, Wiskich JT (1996) The cyanide-resistant oxidase. To inhibit
   We thank Dr. Thomas E. Elthon (University of Nebraska, Lin-                 or not to inhibit, that is the question. Plant Physiol 110: 1–2
coln) for providing the anti-AOX monoclonal antibody and Caro-               Day DA, Whelan J, Millar AH, Siedow JN, Wiskich JT (1995)
lina Schlick (Laboratorio de Microscopı́a Electrónica del Noroeste,           Regulation of the alternative oxidase in plants and fungi. Aust J
Tucumán, Argentina) for collaborating in sample preparation for               Plant Physiol 22: 497–509
light microscopy. Seeds were generously provided by Graciela                 Fernandes De Melo D, Jolivet Y, Rocha Facanha A, Gomes Filho
                                                                               E, Silva Lima M, Dizengremel P (1994) Effect of salt stress on
Salas from the Estación Experimental O. Colombres (Tucumán,
                                                                               mitochondrial energy metabolism of Vigna unguiculata cultivars
Argentina).
                                                                               differing in NaCl tolerance. Plant Physiol 32: 405–412
                                                                             Goldberg R, Catesson AM, Czaninski Y (1983) Some properties of
Received December 31, 1997; accepted March 23, 1998.                           syringaldazine oxidase, a peroxidase specifically involved in the
Copyright Clearance Center: 0032–0889/98/117/0695/07.                          lignification processes. Z Pflanzenphysiol Bd 110S: 267–279

                                 Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                                Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
Effects of Saline Stress on Developing Soybean Roots                                            701

Hare PD, du Plessis S, Cress WA, van Staden J (1996) Stress-             Peyrano G, Taleisnik E, Quiroga M, Forchetti SM, Tigier H (1997)
  induced changes in plant gene expression. S Afr J Sci 92: 431–439        Salinity effects on hydraulic conductance, lignin content and
Hilal M, Castagnaro AP, Moreno H, Massa EM (1997) Specific                 peroxidase activity in tomato roots. Plant Physiol Biochem 35:
  localization of the respiratory alternative oxidase in meristem-         387–393
  atic and xylematic tissues from developing soybean roots and           Purvis AC, Shewfelt RL (1993) Does the alternative pathway
  hypocotyls. Plant Physiol 115: 1499–1503                                 ameliorate chilling injury in sensitive plant tissues? Physiol
Ishikawa H, Evans ML (1995) Specialized zones of development in            Plant 88: 712–718
  roots. Plant Physiol 109: 725–727                                      Richardson K, Jarret L, Finke E (1960) Embedding in epoxy resins
Jolivet Y, Pireaux JC, Dizengremel P (1990) Changes in properties          for ultra thin sectioning in electron microscopy. Stain Technol
  of barley leaf mitochondria isolated from NaCl-treated plants.           35: 313–315
  Plant Physiol 94: 641–646
                                                                         Siedow JN, Umbach AL (1995) Plant mitochondrial electron trans-
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein
                                                                           fer and molecular biology. Plant Cell 7: 821–831
  measurement with the Folin phenol reagent. J Biol Chem 193:
                                                                         Spurr AR (1969) A low viscosity epoxy resin embedding medium
  265–275
Millar AH, Atkin OK, Lambers H, Wiskich JT, Day DA (1995) A                for electron microscopy. J Ultrastruct Res 26: 31–43
  critique of the use of inhibitors to estimate partitioning of elec-    Surjus A, Durand M (1996) Lipid changes in soybean root mem-
  trons between mitochondrial respiratory pathways in plants.              branes in response to salt treatment. J Exp Bot 47: 17–23
  Physiol Plant 95: 523–532                                              Wegner LH, Raschke K (1994) Ion channels in the xylem paren-
Moore AL, Siedow JN (1991) The regulation and nature of the                chyma of barley roots. Plant Physiol 105: 799–813
  cyanide-resistant alternative oxidase of plant mitochondria. Bio-      Zenoff AM, Hilal M, Galo M, Moreno H (1994) Changes in root
  chim Biophys Acta 1059: 121–140                                          lipid composition and inhibition of the extrusion of protons
Munns R (1993) Physiological processes limiting plant growth in            during salt stress in two genotypes of soybean resistant or
  saline soils: some dogmas and hypotheses. Plant Cell Environ             susceptible to stress. Varietal differences. Plant Cell Physiol 35:
  16: 15–24                                                                729–735

                                 Downloaded on February 16, 2021. - Published by https://plantphysiol.org
                                Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
You can also read