LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD

Page created by Sharon Tucker
 
CONTINUE READING
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Les différentes chimies des batteries
lithium-ion et leurs usages industriels

          Thomas Bibienne, PhD
               Agent de Recherche
   Laboratoire Chimie Electrochimie des Solides
               Gpe Pr. Dollé (UdeM)

          Québec Mines - 23 Novembre 2016

                                                  1/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Energy consumption and demand increase

Equivalent of 10 million of oil barrel consumed since this morning!

    TOE = Tons of Oil Equivalent

                                                                           Energy source ?
from D. Larcher and J-M. Tarascon, Nature Chemistry, Vol 7, January 2015                     2/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Renewable energy supply should increase
  energy supply (Mtoe)
     World primary

                                                                 Other: geothermal, solar, winds, heat, etc

                                                                               intermittent !

                                                                               ?
International Energy Agency. 2016. Key world energy statistics                                                3/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Batteries to store energy

      from electrical energy

                          to chemical energy

                                               4/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Energy storage technology: from lead to Li-ion batteries

                      Specific power (W/kg) = acceleration

                                                             Specific energy (Wh/kg) = autonomy

JM Tarascon, Histoire et évolution des technologies d’accumulateurs, Collège de France, 2011      5/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Li-ion market share

                      Li-Ion Batteries: principle and history

                                            Electrode materials

                                                                  Safety

                                                                           6/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Worldwide battery market dominated by lead acid
rapid growth of Li-ion batteries
Volume in

                                                  Volume in

                                                              NiMH Nickel Métal-Hydrure
                                                              NiCd Nickel Cadmium

            modified from Avicenne Energy, 2014                                    7/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
How does a battery work in discharge?

   Negative                                                                      Positive
 LiC6 -» Li+ + e- + C6                                                      Li+ + e- + CoO2 + -» LiCoO2

                                                          Li+

                  LiC6                      Electrolyte              LiCoO2

          modified from the Li-Ion Rechargeable Battery: A Perspective, John B. Goodenough
          and Kyu-Sung Park, J. Am. Chem. Soc., 2013                                               8/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
when lithium-metal used as negative electrode with liquid electrolyte:
formation of lithium dendrite = lithium ‘rod’

        Electric short circuit -» fire

                                                                   9/22
LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
Li-dendrite issue with Li-metal: 2 solution arose

                                                    10/22
Li-metal
                                                                 polymer
                                                                   1978

                                                           Blue Solution Blue Car

Limitation of dendrite formation
No organic solvent

Operated at 80°C                                           2011- présent

 Armand, M. B. in Materials for Advanced Batteries, 1980                            11/22
Li-ion
                                                                                            1983
                                                                         = "rocking chair" battery

                                                                                -» 1991, first Li-ion
                                                                                batteries to be
                                                                                commercialized (Sony)

                                                                                 LiCoO2/Graphite
Issues and challenges facing rechargeable lithium batteries, J.-M. Tarascon and M. Armand, Nature 414, 359-
367, November 2001 - http://www.sonyenergy-devices.co.jp/en/keyword/                                        12/22
Li-ion battery history
    1975                 1980           1983              1984              1997

 Layered structure   LiCoO2 (LCO)     Graphite as      LiMn2O4 (LMO)      LiFePO4 (LFP)
 of LiTiS2           Goodenough and   negative LixC6   Thackeray et al.   Pahdi, Goodenough
 Whittingham         Mizushima        Yazami

                                                                                       13/22
Key requirements for electrode material (theoretical)

 Electrochemical properties
 possibility to be oxidized/reduced
 good electronic conductor

Crystal structure
empty sites to intercalate large amount of Li ion
high lithium chemical diffusion
small volume changing during electrochemical process

 Safety – Price
 chemically stable, non-toxic, inexpensive
 easy to prepare and handling

                                                        14/22
Li-ion technology:
many available positive and negative electrode materials

                                         LMO

 LCO

LFP

           JM Tarascon, Histoire et évolution des technologies d’accumulateurs, Collège de France, 2011   15/22
Substitution in lamellar oxides

                                   CoO2
                                   Li+
                                   CoO2
                                   Li+
      from     LiCoO2 (LCO)        CoO2
                                   Li+
                                   …

       to      LiNi1-y-zMnyCozO2 (NMC)

               LiNi1-y-zCoyAlzO2 (NCA)

                                          16/22
LCO      LiCoO2
Li-ion batteries main application:                     NMC      Li(Ni,Mn,Co)O2
EVs, light electronic                                  LMO      LiMn2O4
-» material’s choice depends on its application        LFP
                                                       NCA
                                                                LiFePO4
                                                                LiNi1-y-zCoyAlzO2

             LCO, NMC

                Consumer
                Electronics

                                                LMO, LFP, NCA

                                                     Transportation
                                                             Electric Vehicles (xEV)

             Source: Avicenne Energy Analyses                                          17/22
LFP      LiFePO4
Evolution of positive electrode market:                                         LMO      LiMn2O4
LFP quick growth prevision                                                      NCA      LiNi1-y-zCoyAlzO2
                                                                                NMC      Li(Ni,Mn,Co)O2
                                                                                LCO      LiCoO2

               market share in 2015                      previsions

                                         Asumption: Tesla use NCA and relative success 200
modified from Avicenne Energy Analyses   000 EV sold/yr in 2025

                                                                                                    18/22
LCO       LiCoO2
Positive electrode price:                                                                  NMC       Li(Ni,Mn,Co)O2
lithium amount and price is not so significant                                             NCA       LiNi1-y-zCoyAlzO2
                                                                                           LMO       LiMn2O4
process has to be optimized                                                                LFP       LiFePO4

In a battery: only 2.5 wt.% of Li in a
battery, being                                                  Metal cost processed in positive electrode
                                                                ($/kWh) (before cell and pack process yield)
Safety
Higher energy density in more powerful Li-ion batteries

                                                              Hoverboard after explosion – 2016
          Tesla model S on fire – 2016                        LCO-NMC ? /Graphite
          NCA/Graphite

                                                                          Samsung Galaxy Note 7 – 2016
                                                                             LCO-NMC ? /Graphite

 Boeing 787 Li-battery pack
 issue – 2013                            Sony laptop – 2006                           Recycling ?
 LCO/Graphite                            LCO/Graphite

                          Source: Google image                                                      20/22
Conclusion

The Li-ion technology that will take the lead will have to sacrifice energy density to
favour security for a given application

Mitsubishi, Batteries 2012                                                       21/22
Perspectives
Rocking chair batteries LTO/LFP : safe, high power
to replace lead acid batteries in Electric Vehicles

                                       Volume in

  Production of electrode materials with locally available precursors
  xLi2CO3 + yTiO2 -» Li4Ti5O12
modified from Avicenne Energy Analyses , 2014
K, Zaghib et al., Safe and fast-charging Li-ion battery with long shelf life for power applications, J Power Sources, 196, 8 (2011)22/22
Take a look inside a battery

    Batterie 18650

                                                   2000m

     sectional view

Design Considerations for Unconventional Electrochemical, A. Vlad et al., Adv. Energy Mater. 2015, 5, 1402115   23/22
24/22
Annexes

          25/22
Production et prix du Lithium aujourd’hui

   Production mondiale de lithium

                                                                    Evolution du prix du Li

https://en.wikipedia.org/wiki/File:Lithium_world_production.svg
http://www.crugroup.com/about-cru/cruinsight/Lithium-The_Problem_With_Prices                  26/22
Et demain ? 3 scénarios envisagés

                                                              Muted – towards high prices

          Measured                                    Aggressive
          stable prices
                                                      drastic drop

http://www.crugroup.com/about-cru/cruinsight/Lithium-The_Problem_With_Prices                27/22
How much Li we will need in 2020

Cellphone:
2 billions light electronic in 2008 – 1800 tons of Li-metal
w/ 8-10% growth/year : 4500 tons in 2014

10 millions of EV
         > 35 000 tons of Li-metal

10 000 systems pf 1 MWh
        > 1 650 tons of Li-metal

Realistic regarding the reserves, slightly higher than the 37 ktons per year

Anne de Guibert, Matériaux stratégiques pour l’énergie et politiques nationales   28/29   28/22
Réserves mondiales Lithium ≠ Gisement exploités mondiaux !

                                                                              Purity ?

      Et au Québec ?

http://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2016-lithi.pdf              29/22
Salar de Uyuni (Bolivie) – plus grande réserve de sel de lithium

Source : Google - Uyuni et lithium desert                          30/22
Une batterie se définit par son voltage et sa capacité

E (volt)
Différence de potentiel                                                              Capacité
entre électrode                                                                      = Autonomie

négative - et positive +

                                                  Capacité (mAh)
Puissance spé.
                                                  = nombre de charges transportées
= accélération

                 P (W) = E (V) * Intensité (A)

                                              26.8 * dx          dx : nombre d’électrons
                     mAh/g     Capacity 
                                                 M                M: masse molaire (g)

                                                                                         31/22
Batteries Li-O2 et Li-S

Li–O2 and Li–S batteries with high energy storage, Peter G. Bruce et al, Nature Materials, Vol 11, 2012   32/22
LFP         LiFePO4
Evolution of positive electrode                                 LMO         LiMn2O4
materials production                                            NCA         LiNi1-y-zCoyAlzO2
                                                                NMC         Li(Ni,Mn,Co)O2
                                                                LCO         LiCoO2

               market share in 2015                      previsions

                                         Asumption: Tesla use NCA and relative success 200
modified from Avicenne Energy Analyses   000 EV sold/yr in 2025

                                                                                       33/22
Li-ion battery geometries

                                                                            Button Cell
                                            Pouch Cell
                                                                  Source: Sanyo
                                            =Li-laminate
    18650 cell                              Source: A123

    Source: Cadex
                                                           2014 market share

                          Prismatic cell
                          Source: Hitachi

modified from Avicenne, 2014

                                                                                          34/22
Electrode materials limitations                                                 LCO            LiCoO2
                                                                                NCA            LiNi1-y-zCoyAlzO2
                                                                                NMC            Li(Ni,Mn,Co)O2
                                                                                LMO            LiMn2O4
 Positive
                                                                                LFP            LiFePO4
 LCO        performance     cost - resource limitations
                                                                                LTO            Li4Ti5O12
            high capacity             safety
 NCA
            high voltage    cost - resource limitations
            high voltage
 NMC                        cost - resource limitations
               safety
              low cost             low capacity
 LMO
            high voltage         limited cycle life
     excellent safety
 LFP low cost of Fe            low energy density
       low toxicity

                                                          Negative
                                                                            cycle life
                                                           Graphite                            low energy density
                                                                           abundance
                                                                      "zero strain" material
                                                            LTO                                   high voltage
                                                                      cycling - efficiencies

                                                                                                                 35/22
Utilisation Cathodes par Cathodes dans Applications

Sources: AVICENNE ENERGY Analyses

                         Thomas Bibienne - Québec Mines - 23 Novembre 2016   36/22
Characteristics of the main positive electrode materials

   LCO LiCoO2                                  NMC Li(Ni,Mn,Co)O2
                                                                                     LFP LiFePO4

              LMO LiMn2O4                                              NCA LiNi0,8Co0,15Al0,05O2

http://batteryuniversity.com/learn/archive/understanding_lithium_ion
http://batteryuniversity.com/learn/article/types_of_lithium_ion
                                                                                                   37/22
You can also read