LES DIFFÉRENTES CHIMIES DES BATTERIES LITHIUM-ION ET LEURS USAGES INDUSTRIELS - THOMAS BIBIENNE, PHD
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Les différentes chimies des batteries lithium-ion et leurs usages industriels Thomas Bibienne, PhD Agent de Recherche Laboratoire Chimie Electrochimie des Solides Gpe Pr. Dollé (UdeM) Québec Mines - 23 Novembre 2016 1/22
Energy consumption and demand increase Equivalent of 10 million of oil barrel consumed since this morning! TOE = Tons of Oil Equivalent Energy source ? from D. Larcher and J-M. Tarascon, Nature Chemistry, Vol 7, January 2015 2/22
Renewable energy supply should increase energy supply (Mtoe) World primary Other: geothermal, solar, winds, heat, etc intermittent ! ? International Energy Agency. 2016. Key world energy statistics 3/22
Energy storage technology: from lead to Li-ion batteries Specific power (W/kg) = acceleration Specific energy (Wh/kg) = autonomy JM Tarascon, Histoire et évolution des technologies d’accumulateurs, Collège de France, 2011 5/22
Worldwide battery market dominated by lead acid rapid growth of Li-ion batteries Volume in Volume in NiMH Nickel Métal-Hydrure NiCd Nickel Cadmium modified from Avicenne Energy, 2014 7/22
How does a battery work in discharge? Negative Positive LiC6 -» Li+ + e- + C6 Li+ + e- + CoO2 + -» LiCoO2 Li+ LiC6 Electrolyte LiCoO2 modified from the Li-Ion Rechargeable Battery: A Perspective, John B. Goodenough and Kyu-Sung Park, J. Am. Chem. Soc., 2013 8/22
when lithium-metal used as negative electrode with liquid electrolyte: formation of lithium dendrite = lithium ‘rod’ Electric short circuit -» fire 9/22
Li-metal polymer 1978 Blue Solution Blue Car Limitation of dendrite formation No organic solvent Operated at 80°C 2011- présent Armand, M. B. in Materials for Advanced Batteries, 1980 11/22
Li-ion 1983 = "rocking chair" battery -» 1991, first Li-ion batteries to be commercialized (Sony) LiCoO2/Graphite Issues and challenges facing rechargeable lithium batteries, J.-M. Tarascon and M. Armand, Nature 414, 359- 367, November 2001 - http://www.sonyenergy-devices.co.jp/en/keyword/ 12/22
Li-ion battery history 1975 1980 1983 1984 1997 Layered structure LiCoO2 (LCO) Graphite as LiMn2O4 (LMO) LiFePO4 (LFP) of LiTiS2 Goodenough and negative LixC6 Thackeray et al. Pahdi, Goodenough Whittingham Mizushima Yazami 13/22
Key requirements for electrode material (theoretical) Electrochemical properties possibility to be oxidized/reduced good electronic conductor Crystal structure empty sites to intercalate large amount of Li ion high lithium chemical diffusion small volume changing during electrochemical process Safety – Price chemically stable, non-toxic, inexpensive easy to prepare and handling 14/22
Li-ion technology: many available positive and negative electrode materials LMO LCO LFP JM Tarascon, Histoire et évolution des technologies d’accumulateurs, Collège de France, 2011 15/22
Substitution in lamellar oxides CoO2 Li+ CoO2 Li+ from LiCoO2 (LCO) CoO2 Li+ … to LiNi1-y-zMnyCozO2 (NMC) LiNi1-y-zCoyAlzO2 (NCA) 16/22
LCO LiCoO2 Li-ion batteries main application: NMC Li(Ni,Mn,Co)O2 EVs, light electronic LMO LiMn2O4 -» material’s choice depends on its application LFP NCA LiFePO4 LiNi1-y-zCoyAlzO2 LCO, NMC Consumer Electronics LMO, LFP, NCA Transportation Electric Vehicles (xEV) Source: Avicenne Energy Analyses 17/22
LFP LiFePO4 Evolution of positive electrode market: LMO LiMn2O4 LFP quick growth prevision NCA LiNi1-y-zCoyAlzO2 NMC Li(Ni,Mn,Co)O2 LCO LiCoO2 market share in 2015 previsions Asumption: Tesla use NCA and relative success 200 modified from Avicenne Energy Analyses 000 EV sold/yr in 2025 18/22
LCO LiCoO2 Positive electrode price: NMC Li(Ni,Mn,Co)O2 lithium amount and price is not so significant NCA LiNi1-y-zCoyAlzO2 LMO LiMn2O4 process has to be optimized LFP LiFePO4 In a battery: only 2.5 wt.% of Li in a battery, being Metal cost processed in positive electrode ($/kWh) (before cell and pack process yield)
Safety Higher energy density in more powerful Li-ion batteries Hoverboard after explosion – 2016 Tesla model S on fire – 2016 LCO-NMC ? /Graphite NCA/Graphite Samsung Galaxy Note 7 – 2016 LCO-NMC ? /Graphite Boeing 787 Li-battery pack issue – 2013 Sony laptop – 2006 Recycling ? LCO/Graphite LCO/Graphite Source: Google image 20/22
Conclusion The Li-ion technology that will take the lead will have to sacrifice energy density to favour security for a given application Mitsubishi, Batteries 2012 21/22
Perspectives Rocking chair batteries LTO/LFP : safe, high power to replace lead acid batteries in Electric Vehicles Volume in Production of electrode materials with locally available precursors xLi2CO3 + yTiO2 -» Li4Ti5O12 modified from Avicenne Energy Analyses , 2014 K, Zaghib et al., Safe and fast-charging Li-ion battery with long shelf life for power applications, J Power Sources, 196, 8 (2011)22/22
Take a look inside a battery Batterie 18650 2000m sectional view Design Considerations for Unconventional Electrochemical, A. Vlad et al., Adv. Energy Mater. 2015, 5, 1402115 23/22
24/22
Annexes 25/22
Production et prix du Lithium aujourd’hui Production mondiale de lithium Evolution du prix du Li https://en.wikipedia.org/wiki/File:Lithium_world_production.svg http://www.crugroup.com/about-cru/cruinsight/Lithium-The_Problem_With_Prices 26/22
Et demain ? 3 scénarios envisagés Muted – towards high prices Measured Aggressive stable prices drastic drop http://www.crugroup.com/about-cru/cruinsight/Lithium-The_Problem_With_Prices 27/22
How much Li we will need in 2020 Cellphone: 2 billions light electronic in 2008 – 1800 tons of Li-metal w/ 8-10% growth/year : 4500 tons in 2014 10 millions of EV > 35 000 tons of Li-metal 10 000 systems pf 1 MWh > 1 650 tons of Li-metal Realistic regarding the reserves, slightly higher than the 37 ktons per year Anne de Guibert, Matériaux stratégiques pour l’énergie et politiques nationales 28/29 28/22
Réserves mondiales Lithium ≠ Gisement exploités mondiaux ! Purity ? Et au Québec ? http://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2016-lithi.pdf 29/22
Salar de Uyuni (Bolivie) – plus grande réserve de sel de lithium Source : Google - Uyuni et lithium desert 30/22
Une batterie se définit par son voltage et sa capacité E (volt) Différence de potentiel Capacité entre électrode = Autonomie négative - et positive + Capacité (mAh) Puissance spé. = nombre de charges transportées = accélération P (W) = E (V) * Intensité (A) 26.8 * dx dx : nombre d’électrons mAh/g Capacity M M: masse molaire (g) 31/22
Batteries Li-O2 et Li-S Li–O2 and Li–S batteries with high energy storage, Peter G. Bruce et al, Nature Materials, Vol 11, 2012 32/22
LFP LiFePO4 Evolution of positive electrode LMO LiMn2O4 materials production NCA LiNi1-y-zCoyAlzO2 NMC Li(Ni,Mn,Co)O2 LCO LiCoO2 market share in 2015 previsions Asumption: Tesla use NCA and relative success 200 modified from Avicenne Energy Analyses 000 EV sold/yr in 2025 33/22
Li-ion battery geometries Button Cell Pouch Cell Source: Sanyo =Li-laminate 18650 cell Source: A123 Source: Cadex 2014 market share Prismatic cell Source: Hitachi modified from Avicenne, 2014 34/22
Electrode materials limitations LCO LiCoO2 NCA LiNi1-y-zCoyAlzO2 NMC Li(Ni,Mn,Co)O2 LMO LiMn2O4 Positive LFP LiFePO4 LCO performance cost - resource limitations LTO Li4Ti5O12 high capacity safety NCA high voltage cost - resource limitations high voltage NMC cost - resource limitations safety low cost low capacity LMO high voltage limited cycle life excellent safety LFP low cost of Fe low energy density low toxicity Negative cycle life Graphite low energy density abundance "zero strain" material LTO high voltage cycling - efficiencies 35/22
Utilisation Cathodes par Cathodes dans Applications Sources: AVICENNE ENERGY Analyses Thomas Bibienne - Québec Mines - 23 Novembre 2016 36/22
Characteristics of the main positive electrode materials LCO LiCoO2 NMC Li(Ni,Mn,Co)O2 LFP LiFePO4 LMO LiMn2O4 NCA LiNi0,8Co0,15Al0,05O2 http://batteryuniversity.com/learn/archive/understanding_lithium_ion http://batteryuniversity.com/learn/article/types_of_lithium_ion 37/22
You can also read